Place charts on the main page immediately before the leaderboard table
Browse files- app.py +169 -36
- src/display/css_html_js.py +1 -0
app.py
CHANGED
|
@@ -160,11 +160,12 @@ def boxplot_per_task(dataframe=None, baselines=None):
|
|
| 160 |
if task in baselines and baselines[task] is not None:
|
| 161 |
fig.add_shape(
|
| 162 |
type="line",
|
| 163 |
-
x0=i-0.3, x1=i+0.3,
|
| 164 |
y0=baselines[task], y1=baselines[task],
|
| 165 |
-
line=dict(color="black", width=2, dash="
|
| 166 |
xref="x", yref="y"
|
| 167 |
)
|
|
|
|
| 168 |
fig.add_annotation(
|
| 169 |
x=i, y=baselines[task],
|
| 170 |
text=f"{baselines[task]}%",
|
|
@@ -172,22 +173,23 @@ def boxplot_per_task(dataframe=None, baselines=None):
|
|
| 172 |
yshift=10,
|
| 173 |
font=dict(size=10, color="black")
|
| 174 |
)
|
|
|
|
| 175 |
|
| 176 |
fig.update_layout(
|
| 177 |
title="Distribution of Model Accuracy by Task",
|
| 178 |
-
|
| 179 |
yaxis_title="Combined Performance",
|
| 180 |
template="plotly_white",
|
| 181 |
boxmode="group",
|
| 182 |
dragmode=False,
|
| 183 |
-
font=dict(family="Arial", size=
|
| 184 |
margin=dict(b=140),
|
| 185 |
)
|
| 186 |
|
| 187 |
fig.add_annotation(
|
| 188 |
text=(
|
| 189 |
-
"In zero/few-shot
|
| 190 |
-
"(
|
| 191 |
),
|
| 192 |
xref="paper", yref="paper",
|
| 193 |
x=0.5, y=-0.30,
|
|
@@ -211,6 +213,12 @@ def boxplot_prompts_per_task(dataframe, tasks=None):
|
|
| 211 |
if tasks is None:
|
| 212 |
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
fig = go.Figure()
|
| 215 |
|
| 216 |
# Liste per creare una sola voce in legenda per Average e Best
|
|
@@ -264,12 +272,12 @@ def boxplot_prompts_per_task(dataframe, tasks=None):
|
|
| 264 |
)
|
| 265 |
|
| 266 |
fig.update_layout(
|
| 267 |
-
title= "
|
| 268 |
-
xaxis_title="",
|
| 269 |
yaxis_title="Combined Performance",
|
| 270 |
barmode='group',
|
| 271 |
template="plotly_white",
|
| 272 |
-
font=dict(family="Arial", size=
|
| 273 |
yaxis=dict(range=[0, 100], fixedrange=True),
|
| 274 |
)
|
| 275 |
|
|
@@ -286,29 +294,28 @@ def boxplot_prompts_per_task(dataframe, tasks=None):
|
|
| 286 |
|
| 287 |
return fig
|
| 288 |
|
|
|
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
-
def line_chart(dataframe):
|
| 292 |
# Separiamo i dati in base a IS_FS
|
| 293 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
| 294 |
df_false = dataframe[dataframe['IS_FS'] == False]
|
| 295 |
|
| 296 |
-
# Estrai valori x, y e labels
|
| 297 |
x_true = df_true['#Params (B)'].tolist()
|
| 298 |
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
|
| 299 |
-
labels_true = [
|
| 300 |
-
#re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
|
| 301 |
-
re.search(r'>([^<]+)<', m).group(1)
|
| 302 |
-
for m in df_true['Model'].tolist()
|
| 303 |
-
]
|
| 304 |
|
| 305 |
x_false = df_false['#Params (B)'].tolist()
|
| 306 |
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
|
| 307 |
-
labels_false = [
|
| 308 |
-
#re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
|
| 309 |
-
re.search(r'>([^<]+)<', m).group(1)
|
| 310 |
-
for m in df_false['Model'].tolist()
|
| 311 |
-
]
|
| 312 |
|
| 313 |
fig = go.Figure()
|
| 314 |
|
|
@@ -316,11 +323,14 @@ def line_chart(dataframe):
|
|
| 316 |
fig.add_trace(go.Scatter(
|
| 317 |
x=x_true,
|
| 318 |
y=y_true,
|
| 319 |
-
mode='markers',
|
| 320 |
name='5-Shot',
|
| 321 |
-
marker=dict(
|
|
|
|
|
|
|
|
|
|
| 322 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 323 |
-
customdata=labels_true
|
| 324 |
))
|
| 325 |
|
| 326 |
# Punti IS_FS=False
|
|
@@ -329,7 +339,10 @@ def line_chart(dataframe):
|
|
| 329 |
y=y_false,
|
| 330 |
mode='markers',
|
| 331 |
name='0-Shot',
|
| 332 |
-
marker=dict(
|
|
|
|
|
|
|
|
|
|
| 333 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 334 |
customdata=labels_false
|
| 335 |
))
|
|
@@ -340,13 +353,18 @@ def line_chart(dataframe):
|
|
| 340 |
yaxis_title="Avg. Combined Performance",
|
| 341 |
template="plotly_white",
|
| 342 |
hovermode="closest",
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
)
|
| 345 |
|
| 346 |
-
#
|
| 347 |
fig.add_annotation(
|
| 348 |
-
text="
|
| 349 |
-
|
| 350 |
xref="paper", yref="paper",
|
| 351 |
x=0, y=-0.3,
|
| 352 |
showarrow=False,
|
|
@@ -354,15 +372,124 @@ def line_chart(dataframe):
|
|
| 354 |
align="left"
|
| 355 |
)
|
| 356 |
|
| 357 |
-
# Disabilita lo zoom e altri controlli
|
| 358 |
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 359 |
fig.update_yaxes(fixedrange=True)
|
| 360 |
-
#fig.update_yaxes(range=[0, 100], fixedrange=True)
|
| 361 |
|
| 362 |
return fig
|
| 363 |
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
|
|
|
| 366 |
|
| 367 |
|
| 368 |
# Define task metadata (icons, names, descriptions)
|
|
@@ -441,13 +568,11 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
| 441 |
else:
|
| 442 |
new_model_column.append(row["Model"])
|
| 443 |
|
| 444 |
-
|
| 445 |
# Lista delle colonne da aggiornare
|
| 446 |
-
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 447 |
# Applichiamo la trasformazione
|
| 448 |
-
for col in cols_to_update:
|
| 449 |
-
|
| 450 |
-
|
| 451 |
|
| 452 |
# Aggiorna la colonna Model
|
| 453 |
sorted_dataframe["Model"] = new_model_column
|
|
@@ -641,6 +766,12 @@ with demo:
|
|
| 641 |
)
|
| 642 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 643 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 644 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 645 |
|
| 646 |
# Main leaderboard tab
|
|
@@ -668,6 +799,7 @@ with demo:
|
|
| 668 |
"""
|
| 669 |
)
|
| 670 |
|
|
|
|
| 671 |
with gr.TabItem("📈 Charts"):
|
| 672 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
| 673 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
|
@@ -675,6 +807,7 @@ with demo:
|
|
| 675 |
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))
|
| 676 |
gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))
|
| 677 |
gr.Plot(value=barplot_mean_few_minus_zero_shot(LEADERBOARD_DF))
|
|
|
|
| 678 |
|
| 679 |
# About tab
|
| 680 |
with gr.TabItem("📝 About"):
|
|
|
|
| 160 |
if task in baselines and baselines[task] is not None:
|
| 161 |
fig.add_shape(
|
| 162 |
type="line",
|
| 163 |
+
x0=i - 0.3, x1=i + 0.3,
|
| 164 |
y0=baselines[task], y1=baselines[task],
|
| 165 |
+
line=dict(color="black", width=2, dash="dot"), # più visibile
|
| 166 |
xref="x", yref="y"
|
| 167 |
)
|
| 168 |
+
'''
|
| 169 |
fig.add_annotation(
|
| 170 |
x=i, y=baselines[task],
|
| 171 |
text=f"{baselines[task]}%",
|
|
|
|
| 173 |
yshift=10,
|
| 174 |
font=dict(size=10, color="black")
|
| 175 |
)
|
| 176 |
+
'''
|
| 177 |
|
| 178 |
fig.update_layout(
|
| 179 |
title="Distribution of Model Accuracy by Task",
|
| 180 |
+
xaxis_title="Task",
|
| 181 |
yaxis_title="Combined Performance",
|
| 182 |
template="plotly_white",
|
| 183 |
boxmode="group",
|
| 184 |
dragmode=False,
|
| 185 |
+
font=dict(family="Arial", size=10),
|
| 186 |
margin=dict(b=140),
|
| 187 |
)
|
| 188 |
|
| 189 |
fig.add_annotation(
|
| 190 |
text=(
|
| 191 |
+
" In tasks like TE and SA, zero/few-shot models reach accuracy close to supervised <br> "
|
| 192 |
+
"methods at EVALITA (dashed line); in NER and REL they remain much lower. "
|
| 193 |
),
|
| 194 |
xref="paper", yref="paper",
|
| 195 |
x=0.5, y=-0.30,
|
|
|
|
| 213 |
if tasks is None:
|
| 214 |
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 215 |
|
| 216 |
+
# Lista delle colonne da aggiornare
|
| 217 |
+
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 218 |
+
# Applichiamo la trasformazione
|
| 219 |
+
for col in cols_to_update:
|
| 220 |
+
dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
| 221 |
+
|
| 222 |
fig = go.Figure()
|
| 223 |
|
| 224 |
# Liste per creare una sola voce in legenda per Average e Best
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
fig.update_layout(
|
| 275 |
+
title= "Prompt Accuracy: Avg vs Best",
|
| 276 |
+
xaxis_title="Task",
|
| 277 |
yaxis_title="Combined Performance",
|
| 278 |
barmode='group',
|
| 279 |
template="plotly_white",
|
| 280 |
+
font=dict(family="Arial", size=10),
|
| 281 |
yaxis=dict(range=[0, 100], fixedrange=True),
|
| 282 |
)
|
| 283 |
|
|
|
|
| 294 |
|
| 295 |
return fig
|
| 296 |
|
| 297 |
+
def line_chart2(dataframe):
|
| 298 |
|
| 299 |
+
# Normalizziamo le dimensioni per avere marker non troppo piccoli né enormi
|
| 300 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
| 301 |
+
vmin, vmax = min(values), max(values)
|
| 302 |
+
return [
|
| 303 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
|
| 304 |
+
for val in values
|
| 305 |
+
]
|
| 306 |
|
|
|
|
| 307 |
# Separiamo i dati in base a IS_FS
|
| 308 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
| 309 |
df_false = dataframe[dataframe['IS_FS'] == False]
|
| 310 |
|
| 311 |
+
# Estrai valori x, y e labels
|
| 312 |
x_true = df_true['#Params (B)'].tolist()
|
| 313 |
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
|
| 314 |
+
labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
x_false = df_false['#Params (B)'].tolist()
|
| 317 |
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
|
| 318 |
+
labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
fig = go.Figure()
|
| 321 |
|
|
|
|
| 323 |
fig.add_trace(go.Scatter(
|
| 324 |
x=x_true,
|
| 325 |
y=y_true,
|
| 326 |
+
mode='markers',
|
| 327 |
name='5-Shot',
|
| 328 |
+
marker=dict(
|
| 329 |
+
color='blue',
|
| 330 |
+
size=scale_sizes(x_true) # marker più grandi se #Params è grande
|
| 331 |
+
),
|
| 332 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 333 |
+
customdata=labels_true
|
| 334 |
))
|
| 335 |
|
| 336 |
# Punti IS_FS=False
|
|
|
|
| 339 |
y=y_false,
|
| 340 |
mode='markers',
|
| 341 |
name='0-Shot',
|
| 342 |
+
marker=dict(
|
| 343 |
+
color='red',
|
| 344 |
+
size=scale_sizes(x_false)
|
| 345 |
+
),
|
| 346 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 347 |
customdata=labels_false
|
| 348 |
))
|
|
|
|
| 353 |
yaxis_title="Avg. Combined Performance",
|
| 354 |
template="plotly_white",
|
| 355 |
hovermode="closest",
|
| 356 |
+
font=dict(family="Arial", size=10),
|
| 357 |
+
dragmode=False,
|
| 358 |
+
xaxis=dict(
|
| 359 |
+
tickvals=[0, 25, 50, 75, 100, 125], # valori che vuoi mostrare
|
| 360 |
+
ticktext=["0", "25", "50", "75", "100"]
|
| 361 |
+
)
|
| 362 |
)
|
| 363 |
|
| 364 |
+
# Caption
|
| 365 |
fig.add_annotation(
|
| 366 |
+
text="Accuracy generally rises with #Params, but smaller models with 5-shot <br> "
|
| 367 |
+
"can outperform larger zero-shot models.",
|
| 368 |
xref="paper", yref="paper",
|
| 369 |
x=0, y=-0.3,
|
| 370 |
showarrow=False,
|
|
|
|
| 372 |
align="left"
|
| 373 |
)
|
| 374 |
|
|
|
|
| 375 |
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 376 |
fig.update_yaxes(fixedrange=True)
|
|
|
|
| 377 |
|
| 378 |
return fig
|
| 379 |
|
| 380 |
|
| 381 |
+
def line_chart(dataframe):
|
| 382 |
+
|
| 383 |
+
import re
|
| 384 |
+
import plotly.graph_objects as go
|
| 385 |
+
|
| 386 |
+
# Normalizziamo le dimensioni per avere marker non troppo piccoli né enormi
|
| 387 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
| 388 |
+
vmin, vmax = min(values), max(values)
|
| 389 |
+
return [
|
| 390 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
|
| 391 |
+
for val in values
|
| 392 |
+
]
|
| 393 |
+
|
| 394 |
+
# Separiamo i dati in base a IS_FS
|
| 395 |
+
df_true = dataframe[dataframe['IS_FS'] == True]
|
| 396 |
+
df_false = dataframe[dataframe['IS_FS'] == False]
|
| 397 |
+
|
| 398 |
+
# Estrai valori x, y e labels
|
| 399 |
+
x_true = df_true['#Params (B)'].tolist()
|
| 400 |
+
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
|
| 401 |
+
labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
|
| 402 |
+
|
| 403 |
+
x_false = df_false['#Params (B)'].tolist()
|
| 404 |
+
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
|
| 405 |
+
labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
|
| 406 |
+
|
| 407 |
+
fig = go.Figure()
|
| 408 |
+
|
| 409 |
+
# Punti IS_FS=True
|
| 410 |
+
fig.add_trace(go.Scatter(
|
| 411 |
+
x=x_true,
|
| 412 |
+
y=y_true,
|
| 413 |
+
mode='markers',
|
| 414 |
+
name='5-Shot',
|
| 415 |
+
marker=dict(
|
| 416 |
+
color='blue',
|
| 417 |
+
size=scale_sizes(x_true)
|
| 418 |
+
),
|
| 419 |
+
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 420 |
+
customdata=labels_true
|
| 421 |
+
))
|
| 422 |
+
|
| 423 |
+
# Punti IS_FS=False
|
| 424 |
+
fig.add_trace(go.Scatter(
|
| 425 |
+
x=x_false,
|
| 426 |
+
y=y_false,
|
| 427 |
+
mode='markers',
|
| 428 |
+
name='0-Shot',
|
| 429 |
+
marker=dict(
|
| 430 |
+
color='red',
|
| 431 |
+
size=scale_sizes(x_false)
|
| 432 |
+
),
|
| 433 |
+
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 434 |
+
customdata=labels_false
|
| 435 |
+
))
|
| 436 |
+
|
| 437 |
+
# Trova il massimo tra tutti i modelli
|
| 438 |
+
all_y = y_true + y_false
|
| 439 |
+
all_x = x_true + x_false
|
| 440 |
+
all_labels = labels_true + labels_false
|
| 441 |
+
max_idx = all_y.index(max(all_y))
|
| 442 |
+
max_x = all_x[max_idx]
|
| 443 |
+
max_y = all_y[max_idx]
|
| 444 |
+
max_label = all_labels[max_idx]
|
| 445 |
+
|
| 446 |
+
# Aggiungi annotazione visibile per il modello migliore
|
| 447 |
+
fig.add_annotation(
|
| 448 |
+
x=max_x,
|
| 449 |
+
y=max_y,
|
| 450 |
+
#text=f"Top: {max_label} ({max_y:.1f}%)",
|
| 451 |
+
text=f"{max_label}",
|
| 452 |
+
showarrow=True,
|
| 453 |
+
arrowhead=2,
|
| 454 |
+
arrowsize=1,
|
| 455 |
+
arrowwidth=2,
|
| 456 |
+
arrowcolor="black",
|
| 457 |
+
font=dict(size=11, color="black"),
|
| 458 |
+
xshift=10,
|
| 459 |
+
yshift=10,
|
| 460 |
+
ax = -30, ay = -20, # sposta la label a sinistra e sopra il punto
|
| 461 |
+
xanchor = "right" # allinea la label a destra rispetto al punto
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
fig.update_layout(
|
| 465 |
+
title="Avg. Combined Performance vs #Params",
|
| 466 |
+
xaxis_title="#Params (B)",
|
| 467 |
+
yaxis_title="Avg. Combined Performance",
|
| 468 |
+
template="plotly_white",
|
| 469 |
+
hovermode="closest",
|
| 470 |
+
font=dict(family="Arial", size=10),
|
| 471 |
+
dragmode=False,
|
| 472 |
+
xaxis=dict(
|
| 473 |
+
tickvals=[0, 25, 50, 75, 100, 125],
|
| 474 |
+
ticktext=["0", "25", "50", "75", "100"]
|
| 475 |
+
)
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# Caption
|
| 479 |
+
fig.add_annotation(
|
| 480 |
+
text="Accuracy generally rises with #Params, but smaller models with 5-shot <br>"
|
| 481 |
+
"can outperform larger zero-shot models.",
|
| 482 |
+
xref="paper", yref="paper",
|
| 483 |
+
x=0, y=-0.3,
|
| 484 |
+
showarrow=False,
|
| 485 |
+
font=dict(size=11, color="gray"),
|
| 486 |
+
align="left"
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 490 |
+
fig.update_yaxes(fixedrange=True)
|
| 491 |
|
| 492 |
+
return fig
|
| 493 |
|
| 494 |
|
| 495 |
# Define task metadata (icons, names, descriptions)
|
|
|
|
| 568 |
else:
|
| 569 |
new_model_column.append(row["Model"])
|
| 570 |
|
|
|
|
| 571 |
# Lista delle colonne da aggiornare
|
| 572 |
+
#cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 573 |
# Applichiamo la trasformazione
|
| 574 |
+
#for col in cols_to_update:
|
| 575 |
+
# dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
|
|
|
| 576 |
|
| 577 |
# Aggiorna la colonna Model
|
| 578 |
sorted_dataframe["Model"] = new_model_column
|
|
|
|
| 766 |
)
|
| 767 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 768 |
|
| 769 |
+
# ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
|
| 770 |
+
with gr.Row():
|
| 771 |
+
gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
| 772 |
+
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES), elem_id="boxplot-task")
|
| 773 |
+
gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")
|
| 774 |
+
|
| 775 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 776 |
|
| 777 |
# Main leaderboard tab
|
|
|
|
| 799 |
"""
|
| 800 |
)
|
| 801 |
|
| 802 |
+
'''
|
| 803 |
with gr.TabItem("📈 Charts"):
|
| 804 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
| 805 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
|
|
|
| 807 |
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))
|
| 808 |
gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))
|
| 809 |
gr.Plot(value=barplot_mean_few_minus_zero_shot(LEADERBOARD_DF))
|
| 810 |
+
'''
|
| 811 |
|
| 812 |
# About tab
|
| 813 |
with gr.TabItem("📝 About"):
|
src/display/css_html_js.py
CHANGED
|
@@ -104,3 +104,4 @@ get_window_url_params = """
|
|
| 104 |
return url_params;
|
| 105 |
}
|
| 106 |
"""
|
|
|
|
|
|
| 104 |
return url_params;
|
| 105 |
}
|
| 106 |
"""
|
| 107 |
+
|