rzanoli's picture
Refactor and optimize all interface chart code
5e09303
raw
history blame
24.7 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# EVALITA results
BASELINES = {
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}
# GPT-4o results
REFERENCES = {
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
}
def theoretical_performance(df_hash):
"""
Theoretical performance of a model that scores the highest on every individual task
"""
# This is a placeholder - you'd need to pass the actual dataframe
# In practice, you'd compute this once and store it
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
return 75.0 # Placeholder value
def scale_sizes(values, min_size=8, max_size=30):
"""Normalize sizes for scatter plot markers """
if not values:
return []
vmin, vmax = min(values), max(values)
if vmax == vmin:
return [(min_size + max_size) / 2] * len(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
for val in values
]
def extract_model_name(model_string):
"""Extract model name from HTML string."""
match = re.search(r'>([^<]+)<', model_string)
return match.group(1) if match else model_string
def create_line_chart(dataframe):
"""Create left chart."""
def scale_sizes(values, min_size=8, max_size=30):
vmin, vmax = min(values), max(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
else (min_size + max_size) / 2
for val in values
]
fig = go.Figure()
# Loop su 5-Shot e 0-Shot
for shot, color in [(True, "blue"), (False, "red")]:
df = dataframe[dataframe["IS_FS"] == shot]
x = df["#Params (B)"].tolist()
y = df["Avg. Comb. Perf. ⬆️"].tolist()
labels = [
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
for m in df["Model"].tolist()
]
fig.add_trace(go.Scatter(
x=x,
y=y,
mode="markers",
name="5-Shot" if shot else "0-Shot",
marker=dict(color=color, size=scale_sizes(x)),
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
customdata=labels,
))
# Show the best model
all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
if all_y:
max_idx = all_y.index(max(all_y))
max_x = dataframe["#Params (B)"].iloc[max_idx]
max_y = all_y[max_idx]
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
fig.add_annotation(
x=max_x,
y=max_y,
text=max_label,
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="black",
font=dict(size=11, color="black"),
xshift=10, yshift=10,
ax=-30, ay=-20,
xanchor="right"
)
# Layout
fig.update_layout(
title="Avg. Combined Performance vs #Params",
xaxis_title="#Params (B)", yaxis_title="Avg. Combined Performance",
template="plotly_white", hovermode="closest",
font=dict(family="Arial", size=10), dragmode=False,
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
)
# Caption
fig.add_annotation(
text="Accuracy generally rises with #Params, but smaller models <br>"
"with 5-shot can outperform larger zero-shot models.",
xref="paper", yref="paper", x=0.5, y=-0.3,
showarrow=False, font=dict(size=11, color="gray"),
align="center", xanchor="center"
)
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
# Create right chart
def create_boxplot_task(dataframe=None, baselines=None, references=None):
"""Create right chart"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
# Dati di default se non forniti
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
if references is None:
references = {}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
fig = go.Figure()
for i, task in enumerate(tasks):
if task not in dataframe.columns:
continue
y_data = dataframe[task].dropna().tolist()
# Boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# Linea baseline
baseline_value = baselines.get(task)
if baseline_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=baseline_value, y1=baseline_value,
line=dict(color="black", width=2, dash="dot"),
xref="x", yref="y"
)
# Linea reference GPT-4o
reference_value = references.get(task)
if reference_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=reference_value, y1=reference_value,
line=dict(color="red", width=2, dash="dashdot"),
xref="x", yref="y"
)
# Layout
fig.update_layout(
title="Distribution of Model Accuracy by Task",
xaxis_title="Task",
yaxis_title="Combined Performance",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=10),
margin=dict(b=80)
)
# Caption
fig.add_annotation(
text=(
"In tasks like TE and SA, models approach the accuracy of supervised <br>"
"models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
"Dashed red lines show GPT-4o reference results for generative tasks."
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray"),
align="center"
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
fig.update_xaxes(fixedrange=True)
return fig
def create_medal_assignments(sorted_df):
"""Function for medal assignment logic"""
medals = {
'large_fs': False, 'medium_fs': False, 'small_fs': False,
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
}
new_model_column = []
for _, row in sorted_df.iterrows():
model_name = row['Model']
size = row["Size"]
is_fs = row['IS_FS']
if is_fs: # 5-Few-Shot
if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_fs']:
model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸ†"
medals['large_fs'] = True
elif size == "πŸ”΅πŸ”΅" and not medals['medium_fs']:
model_name = f"{model_name} πŸ”΅πŸ”΅πŸ†"
medals['medium_fs'] = True
elif size == "πŸ”΅" and not medals['small_fs']:
model_name = f"{model_name} πŸ”΅πŸ†"
medals['small_fs'] = True
else: # 0-Shot
if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_0shot']:
model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ"
medals['large_0shot'] = True
elif size == "πŸ”΅πŸ”΅" and not medals['medium_0shot']:
model_name = f"{model_name} πŸ”΅πŸ”΅πŸŽ–οΈ"
medals['medium_0shot'] = True
elif size == "πŸ”΅" and not medals['small_0shot']:
model_name = f"{model_name} πŸ”΅πŸŽ–οΈ"
medals['small_0shot'] = True
new_model_column.append(model_name)
return new_model_column
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
"""Base leaderboard creation with common parameters. """
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Leaderboard initialization. """
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
""" Task-specific leaderboard update."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list] + [int],
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
def download_snapshot(repo, local_dir, max_retries=3):
"""Snapshot download with retry logic."""
for attempt in range(max_retries):
try:
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
snapshot_download(
repo_id=repo,
local_dir=local_dir,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
return True
except Exception as e:
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
logger.error(f"Failed to download {repo} after {max_retries} attempts")
return False
return False
def restart_space():
"""Restart the Hugging Face space."""
try:
logger.info("Restarting space...")
API.restart_space(repo_id=REPO_ID)
except Exception as e:
logger.error(f"Error restarting space: {e}")
def create_title_html():
"""Function for title HTML."""
return """
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
<h1 style="
margin: 0 auto;
font-weight: 900;
font-size: 2.5em;
letter-spacing: 2px;
text-transform: uppercase;
background: linear-gradient(90deg, #1f77b4, #00c6ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
">
EVALITA-LLM Leaderboard
</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
def create_credits_markdown():
"""Credits section."""
return """
**This project has benefited from the following support:**
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- πŸ’Ά **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- πŸ–₯️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
# Main initialization
def initialize_app():
"""Initialize the application."""
try:
# Download snapshots
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
if not (queue_success and results_success):
logger.error("Failed to download required data")
return None, None, None, None, None
# Load leaderboard data
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS)
# Calculate theoretical max performance
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
except Exception as e:
logger.error(f"Error initializing app: {e}")
return None, None, None, None, None
# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
if LEADERBOARD_DF is None:
# Fallback behavior
logger.error("Failed to initialize app data")
theoretical_max_combined_perf = 0.0
def create_gradio_interface():
"""The main Gradio interface."""
demo = gr.Blocks(css=custom_css)
with demo:
# Title
gr.HTML(create_title_html())
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Charts section
with gr.Row():
if LEADERBOARD_DF is not None:
# Note: You'd need to implement these chart functions properly
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
# Tabs
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("πŸ… Benchmark"):
if LEADERBOARD_DF is not None:
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
"WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
"HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
gr.HTML(
f"""
<div style="
border: 2px solid #1f77b4;
border-radius: 10px;
padding: 10px;
background-color: #f0f8ff;
font-weight: bold;
font-size: 14px;
display: inline-block;
">
Theoretical performance of a model that scores the highest on every individual task:
<span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
</div>
"""
)
# About tab
with gr.TabItem("πŸ“ About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("β•‘", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs
if LEADERBOARD_DF is not None:
# Multiple choice tasks
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
with gr.TabItem("β”‚", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Generative tasks
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Citation and Credits sections
with gr.Accordion("πŸ“™ Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True
)
with gr.Accordion("πŸ“™ Credits", open=False):
gr.Markdown(create_credits_markdown())
return demo
# Create and configure the demo
demo = create_gradio_interface()
# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=40).launch(
debug=True,
show_error=True
)