euler314's picture
Update app.py
e0cba61 verified
raw
history blame
31.9 kB
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp
import uuid
# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
# Color map for typhoon categories
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
'C2 Typhoon': 'rgb(255, 191, 0)',
'C1 Typhoon': 'rgb(255, 255, 0)',
'Tropical Storm': 'rgb(0, 255, 255)',
'Tropical Depression': 'rgb(173, 216, 230)'
}
# Classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
# Data loading and preprocessing functions
def download_oni_file(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_ibtracs_data():
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
next(infile); next(infile)
reader = csv.reader(infile)
sid_data = defaultdict(list)
for row in reader:
if row:
sid = row[0]
sid_data[sid].append((row, row[6]))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date, 'END_DATE': end_date
})
def load_data(oni_path, typhoon_path):
oni_data = pd.read_csv(oni_path)
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
return oni_data, typhoon_data
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
'LAT': 'first', 'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed
if wind_speed_kt >= 137:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83:
return 'C2 Typhoon'
elif wind_speed_kt >= 64:
return 'C1 Typhoon'
elif wind_speed_kt >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Main analysis functions
def generate_typhoon_tracks(filtered_data, typhoon_search):
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(title='Typhoon Tracks', geo=dict(projection_type='natural earth', showland=True))
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_regression_analysis(filtered_data):
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1, 1)
y = filtered_data['ONI']
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
# Path animation function using Gallery with image export
def categorize_typhoon_by_standard(wind_speed, standard):
if standard == 'taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
def generate_track_gallery(year, typhoon, standard):
if not typhoon:
return []
typhoon_id = typhoon.split('(')[-1].strip(')')
storm = ibtracs.get_storm(typhoon_id)
# Map focus
min_lat, max_lat = min(storm.lat), max(storm.lat)
min_lon, max_lon = min(storm.lon), max(storm.lon)
lat_padding = max((max_lat - min_lat) * 0.3, 5)
lon_padding = max((max_lon - min_lon) * 0.3, 5)
# Temporary directory for images
temp_dir = tempfile.mkdtemp()
gallery = []
# Generate a sequence of figures and save as images
for i in range(len(storm.time)):
fig = go.Figure()
# Add the growing track up to the current point
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
fig.add_trace(go.Scattergeo(
lon=storm.lon[:i+1],
lat=storm.lat[:i+1],
mode='lines+markers',
line=dict(width=2, color='blue'),
marker=dict(size=8, color=color),
name=f"{storm.name}",
text=[f"Time: {storm.time[j].strftime('%Y-%m-%d %H:%M')}<br>Wind: {storm.vmax[j]:.1f} kt<br>Category: {categorize_typhoon_by_standard(storm.vmax[j], standard)[0]}" for j in range(i+1)],
hoverinfo="text"
))
# Add category legend
standard_dict = atlantic_standard if standard == 'atlantic' else taiwan_standard
for cat, details in standard_dict.items():
fig.add_trace(go.Scattergeo(
lon=[None], lat=[None], mode='markers',
marker=dict(size=10, color=details['color']),
name=cat,
showlegend=True
))
# Update layout
fig.update_layout(
title=f"{year} {storm.name} at {storm.time[i].strftime('%Y-%m-%d %H:%M')}",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(204, 204, 204)',
showocean=True,
oceancolor='rgb(230, 230, 255)',
lataxis={'range': [min_lat - lat_padding, max_lat + lat_padding]},
lonaxis={'range': [min_lon - lon_padding, max_lon + lon_padding]}
),
height=700,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01,
bgcolor="rgba(255, 255, 255, 0.8)"
)
)
# Save figure as image
image_path = os.path.join(temp_dir, f"frame_{i}_{uuid.uuid4()}.png")
fig.write_image(image_path, width=1000, height=700)
gallery.append(image_path)
return gallery
# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
data['western_typhoon'] = (data['LON'] <= 140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
# Gradio interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase
- **Statistical Analysis**: Examine relationships between ONI values and typhoon characteristics
- **Path Animation**: View a gallery of typhoon path progression over time
- **Regression Analysis**: Perform statistical regression on typhoon data
Select a tab above to begin your analysis.
""")
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID'] == sid]
name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({storm_data['SEASON'].iloc[0]})",
line=dict(width=1.5, color=color),
hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID'] == sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
line=dict(width=3, color='yellow'),
marker=dict(size=5),
hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(204, 204, 204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El Niño, Blue: La Niña, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
analyze_btn.click(
fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count]
)
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
wind_analyze_btn.click(
fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results]
)
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
pressure_analyze_btn.click(
fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results]
)
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
lon_analyze_btn.click(
fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results]
)
with gr.Tab("Typhoon Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
typhoon_dropdown = gr.Dropdown(label="Typhoon")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
animate_btn = gr.Button("Generate Animation Gallery")
path_gallery = gr.Gallery(label="Typhoon Path Progression", elem_id="path_gallery", columns=1, height="auto")
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year and typhoon from the dropdowns
2. Choose a classification standard (Atlantic or Taiwan)
3. Click "Generate Animation Gallery"
4. Scroll through the gallery to see the typhoon track growing over time
5. Each image represents a step in the typhoon's path, with the blue line extending and markers showing intensity
""")
def update_typhoon_options(year):
season = ibtracs.get_season(int(year))
storm_summary = season.summary()
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
return gr.update(choices=options, value=options[0] if options else None)
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
animate_btn.click(
fn=generate_track_gallery,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=path_gallery
)
# Custom CSS for better spacing and visibility
gr.HTML("""
<style>
#tracks_plot {
height: 700px !important;
width: 100%;
}
#path_gallery .gallery-item {
height: 700px !important;
width: 100% !important;
}
.plot-container {
min-height: 600px;
}
.gr-plotly {
width: 100% !important;
}
</style>
""")
demo.launch(share=True) # Enable public link sharing