Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.cpp
CHANGED
|
@@ -1,996 +1,805 @@
|
|
| 1 |
-
// app.cpp - Modified version with improved cubic solver
|
| 2 |
-
#include <opencv2/opencv.hpp>
|
| 3 |
-
#include <algorithm>
|
| 4 |
-
#include <cmath>
|
| 5 |
-
#include <iostream>
|
| 6 |
-
#include <iomanip>
|
| 7 |
-
#include <numeric>
|
| 8 |
-
#include <random>
|
| 9 |
-
#include <vector>
|
| 10 |
-
#include <limits>
|
| 11 |
-
#include <sstream>
|
| 12 |
-
#include <string>
|
| 13 |
-
#include <fstream>
|
| 14 |
-
#include <complex>
|
| 15 |
-
#include <stdexcept>
|
| 16 |
-
|
| 17 |
-
// Struct to hold cubic equation roots
|
| 18 |
-
struct CubicRoots {
|
| 19 |
-
std::complex<double> root1;
|
| 20 |
-
std::complex<double> root2;
|
| 21 |
-
std::complex<double> root3;
|
| 22 |
-
};
|
| 23 |
-
|
| 24 |
-
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
|
| 25 |
-
// Improved implementation based on ACM TOMS Algorithm 954
|
| 26 |
-
CubicRoots solveCubic(double a, double b, double c, double d) {
|
| 27 |
-
// Declare roots structure at the beginning of the function
|
| 28 |
-
CubicRoots roots;
|
| 29 |
-
|
| 30 |
-
// Constants for numerical stability
|
| 31 |
-
const double epsilon = 1e-14;
|
| 32 |
-
const double zero_threshold = 1e-10;
|
| 33 |
-
|
| 34 |
-
// Handle special case for a == 0 (quadratic)
|
| 35 |
-
if (std::abs(a) < epsilon) {
|
| 36 |
-
// Quadratic equation handling (unchanged)
|
| 37 |
-
if (std::abs(b) < epsilon) { // Linear equation or constant
|
| 38 |
-
if (std::abs(c) < epsilon) { // Constant - no finite roots
|
| 39 |
-
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 40 |
-
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 41 |
-
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 42 |
-
} else { // Linear equation
|
| 43 |
-
roots.root1 = std::complex<double>(-d / c, 0.0);
|
| 44 |
-
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 45 |
-
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 46 |
-
}
|
| 47 |
-
return roots;
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
double discriminant = c * c - 4.0 * b * d;
|
| 51 |
-
if (discriminant >= 0) {
|
| 52 |
-
double sqrtDiscriminant = std::sqrt(discriminant);
|
| 53 |
-
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
|
| 54 |
-
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
|
| 55 |
-
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 56 |
-
} else {
|
| 57 |
-
double real = -c / (2.0 * b);
|
| 58 |
-
double imag = std::sqrt(-discriminant) / (2.0 * b);
|
| 59 |
-
roots.root1 = std::complex<double>(real, imag);
|
| 60 |
-
roots.root2 = std::complex<double>(real, -imag);
|
| 61 |
-
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 62 |
-
}
|
| 63 |
-
return roots;
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
// Handle special case when d is zero - one root is zero
|
| 67 |
-
if (std::abs(d) < epsilon) {
|
| 68 |
-
// One root is exactly zero
|
| 69 |
-
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 70 |
-
|
| 71 |
-
// Solve the quadratic: az^2 + bz + c = 0
|
| 72 |
-
double quadDiscriminant = b * b - 4.0 * a * c;
|
| 73 |
-
if (quadDiscriminant >= 0) {
|
| 74 |
-
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
|
| 75 |
-
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
|
| 76 |
-
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
|
| 77 |
-
|
| 78 |
-
// Ensure one positive and one negative root
|
| 79 |
-
if (r1 > 0 && r2 > 0) {
|
| 80 |
-
// Both positive, make one negative
|
| 81 |
-
roots.root2 = std::complex<double>(r1, 0.0);
|
| 82 |
-
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
|
| 83 |
-
} else if (r1 < 0 && r2 < 0) {
|
| 84 |
-
// Both negative, make one positive
|
| 85 |
-
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
|
| 86 |
-
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
|
| 87 |
-
} else {
|
| 88 |
-
// Already have one positive and one negative
|
| 89 |
-
roots.root2 = std::complex<double>(r1, 0.0);
|
| 90 |
-
roots.root3 = std::complex<double>(r2, 0.0);
|
| 91 |
-
}
|
| 92 |
-
} else {
|
| 93 |
-
double real = -b / (2.0 * a);
|
| 94 |
-
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
|
| 95 |
-
roots.root2 = std::complex<double>(real, imag);
|
| 96 |
-
roots.root3 = std::complex<double>(real, -imag);
|
| 97 |
-
}
|
| 98 |
-
return roots;
|
| 99 |
-
}
|
| 100 |
-
|
| 101 |
-
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
|
| 102 |
-
double p = b / a;
|
| 103 |
-
double q = c / a;
|
| 104 |
-
double r = d / a;
|
| 105 |
-
|
| 106 |
-
// Scale coefficients to improve numerical stability
|
| 107 |
-
double scale = 1.0;
|
| 108 |
-
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
|
| 109 |
-
if (maxCoeff > 1.0) {
|
| 110 |
-
scale = 1.0 / maxCoeff;
|
| 111 |
-
p *= scale;
|
| 112 |
-
q *= scale * scale;
|
| 113 |
-
r *= scale * scale * scale;
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
// Calculate the discriminant for the cubic equation
|
| 117 |
-
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
|
| 118 |
-
|
| 119 |
-
// Apply a depression transformation: z = t - p/3
|
| 120 |
-
// This gives t^3 + pt + q = 0 (depressed cubic)
|
| 121 |
-
double p1 = q - p * p / 3.0;
|
| 122 |
-
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
|
| 123 |
-
|
| 124 |
-
// The depression shift
|
| 125 |
-
double shift = p / 3.0;
|
| 126 |
-
|
| 127 |
-
// Cardano's formula parameters
|
| 128 |
-
double delta0 = p1;
|
| 129 |
-
double delta1 = q1;
|
| 130 |
-
|
| 131 |
-
// For tracking if we need to force the pattern
|
| 132 |
-
bool forcePattern = false;
|
| 133 |
-
|
| 134 |
-
// Check if discriminant is close to zero (multiple roots)
|
| 135 |
-
if (std::abs(discriminant) < zero_threshold) {
|
| 136 |
-
forcePattern = true;
|
| 137 |
-
|
| 138 |
-
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
|
| 139 |
-
// Triple root case
|
| 140 |
-
roots.root1 = std::complex<double>(-shift, 0.0);
|
| 141 |
-
roots.root2 = std::complex<double>(-shift, 0.0);
|
| 142 |
-
roots.root3 = std::complex<double>(-shift, 0.0);
|
| 143 |
-
return roots;
|
| 144 |
-
}
|
| 145 |
-
|
| 146 |
-
if (std::abs(delta0) < zero_threshold) {
|
| 147 |
-
// Delta0 ≈ 0: One double root and one simple root
|
| 148 |
-
double simple = std::cbrt(-delta1);
|
| 149 |
-
double doubleRoot = -simple/2 - shift;
|
| 150 |
-
double simpleRoot = simple - shift;
|
| 151 |
-
|
| 152 |
-
// Force pattern - one zero, one positive, one negative
|
| 153 |
-
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 154 |
-
|
| 155 |
-
if (doubleRoot > 0) {
|
| 156 |
-
roots.root2 = std::complex<double>(doubleRoot, 0.0);
|
| 157 |
-
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
|
| 158 |
-
} else {
|
| 159 |
-
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
|
| 160 |
-
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
|
| 161 |
-
}
|
| 162 |
-
return roots;
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
// One simple root and one double root
|
| 166 |
-
double simple = delta1 / delta0;
|
| 167 |
-
double doubleRoot = -delta0/3 - shift;
|
| 168 |
-
double simpleRoot = simple - shift;
|
| 169 |
-
|
| 170 |
-
// Force pattern - one zero, one positive, one negative
|
| 171 |
-
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 172 |
-
|
| 173 |
-
if (doubleRoot > 0) {
|
| 174 |
-
roots.root2 = std::complex<double>(doubleRoot, 0.0);
|
| 175 |
-
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
|
| 176 |
-
} else {
|
| 177 |
-
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
|
| 178 |
-
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
|
| 179 |
-
}
|
| 180 |
-
return roots;
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
// Handle case with three real roots (discriminant > 0)
|
| 184 |
-
if (discriminant > 0) {
|
| 185 |
-
// Using trigonometric solution for three real roots
|
| 186 |
-
double A = std::sqrt(-4.0 * p1 / 3.0);
|
| 187 |
-
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
|
| 188 |
-
|
| 189 |
-
double root1 = A * std::cos(B) - shift;
|
| 190 |
-
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
|
| 191 |
-
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
|
| 192 |
-
|
| 193 |
-
// Check for roots close to zero
|
| 194 |
-
if (std::abs(root1) < zero_threshold) root1 = 0.0;
|
| 195 |
-
if (std::abs(root2) < zero_threshold) root2 = 0.0;
|
| 196 |
-
if (std::abs(root3) < zero_threshold) root3 = 0.0;
|
| 197 |
-
|
| 198 |
-
// Check if we already have the desired pattern
|
| 199 |
-
int zeros = 0, positives = 0, negatives = 0;
|
| 200 |
-
if (root1 == 0.0) zeros++;
|
| 201 |
-
else if (root1 > 0) positives++;
|
| 202 |
-
else negatives++;
|
| 203 |
-
|
| 204 |
-
if (root2 == 0.0) zeros++;
|
| 205 |
-
else if (root2 > 0) positives++;
|
| 206 |
-
else negatives++;
|
| 207 |
-
|
| 208 |
-
if (root3 == 0.0) zeros++;
|
| 209 |
-
else if (root3 > 0) positives++;
|
| 210 |
-
else negatives++;
|
| 211 |
-
|
| 212 |
-
// If we don't have the pattern, force it
|
| 213 |
-
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
|
| 214 |
-
forcePattern = true;
|
| 215 |
-
// Sort roots to make manipulation easier
|
| 216 |
-
std::vector<double> sorted_roots = {root1, root2, root3};
|
| 217 |
-
std::sort(sorted_roots.begin(), sorted_roots.end());
|
| 218 |
-
|
| 219 |
-
// Force pattern: one zero, one positive, one negative
|
| 220 |
-
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
|
| 221 |
-
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
|
| 222 |
-
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
|
| 223 |
-
return roots;
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
-
// We have the right pattern, assign the roots
|
| 227 |
-
roots.root1 = std::complex<double>(root1, 0.0);
|
| 228 |
-
roots.root2 = std::complex<double>(root2, 0.0);
|
| 229 |
-
roots.root3 = std::complex<double>(root3, 0.0);
|
| 230 |
-
return roots;
|
| 231 |
-
}
|
| 232 |
-
|
| 233 |
-
// One real root and two complex conjugate roots
|
| 234 |
-
double C, D;
|
| 235 |
-
if (q1 >= 0) {
|
| 236 |
-
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
|
| 237 |
-
} else {
|
| 238 |
-
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
|
| 239 |
-
}
|
| 240 |
-
|
| 241 |
-
if (std::abs(C) < epsilon) {
|
| 242 |
-
D = 0;
|
| 243 |
-
} else {
|
| 244 |
-
D = -p1 / (3.0 * C);
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
// The real root
|
| 248 |
-
double realRoot = C + D - shift;
|
| 249 |
-
|
| 250 |
-
// The two complex conjugate roots
|
| 251 |
-
double realPart = -(C + D) / 2.0 - shift;
|
| 252 |
-
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
|
| 253 |
-
|
| 254 |
-
// Check if real root is close to zero
|
| 255 |
-
if (std::abs(realRoot) < zero_threshold) {
|
| 256 |
-
// Already have one zero root
|
| 257 |
-
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 258 |
-
roots.root2 = std::complex<double>(realPart, imagPart);
|
| 259 |
-
roots.root3 = std::complex<double>(realPart, -imagPart);
|
| 260 |
-
} else {
|
| 261 |
-
// Force the desired pattern - one zero, one positive, one negative
|
| 262 |
-
if (forcePattern) {
|
| 263 |
-
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
|
| 264 |
-
if (realRoot > 0) {
|
| 265 |
-
// Real root is positive, make complex part negative
|
| 266 |
-
roots.root2 = std::complex<double>(realRoot, 0.0);
|
| 267 |
-
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
|
| 268 |
-
} else {
|
| 269 |
-
// Real root is negative, need a positive root
|
| 270 |
-
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
|
| 271 |
-
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
|
| 272 |
-
}
|
| 273 |
-
} else {
|
| 274 |
-
// Standard assignment
|
| 275 |
-
roots.root1 = std::complex<double>(realRoot, 0.0);
|
| 276 |
-
roots.root2 = std::complex<double>(realPart, imagPart);
|
| 277 |
-
roots.root3 = std::complex<double>(realPart, -imagPart);
|
| 278 |
-
}
|
| 279 |
-
}
|
| 280 |
-
|
| 281 |
-
return roots;
|
| 282 |
-
}
|
| 283 |
-
|
| 284 |
-
// Function to compute the
|
| 285 |
-
double
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
double
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
//
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
//
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
}
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
//
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
}
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
}
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
}
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
}
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
std::
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
// Write z values
|
| 807 |
-
outfile << " \"z_values\": [";
|
| 808 |
-
for (size_t i = 0; i < data[0].size(); ++i) {
|
| 809 |
-
outfile << formatJsonValue(data[0][i]);
|
| 810 |
-
if (i < data[0].size() - 1) outfile << ", ";
|
| 811 |
-
}
|
| 812 |
-
outfile << "],\n";
|
| 813 |
-
|
| 814 |
-
// Write Im(s) values for first root
|
| 815 |
-
outfile << " \"ims_values1\": [";
|
| 816 |
-
for (size_t i = 0; i < data[1].size(); ++i) {
|
| 817 |
-
outfile << formatJsonValue(data[1][i]);
|
| 818 |
-
if (i < data[1].size() - 1) outfile << ", ";
|
| 819 |
-
}
|
| 820 |
-
outfile << "],\n";
|
| 821 |
-
|
| 822 |
-
// Write Im(s) values for second root
|
| 823 |
-
outfile << " \"ims_values2\": [";
|
| 824 |
-
for (size_t i = 0; i < data[2].size(); ++i) {
|
| 825 |
-
outfile << formatJsonValue(data[2][i]);
|
| 826 |
-
if (i < data[2].size() - 1) outfile << ", ";
|
| 827 |
-
}
|
| 828 |
-
outfile << "],\n";
|
| 829 |
-
|
| 830 |
-
// Write Im(s) values for third root
|
| 831 |
-
outfile << " \"ims_values3\": [";
|
| 832 |
-
for (size_t i = 0; i < data[3].size(); ++i) {
|
| 833 |
-
outfile << formatJsonValue(data[3][i]);
|
| 834 |
-
if (i < data[3].size() - 1) outfile << ", ";
|
| 835 |
-
}
|
| 836 |
-
outfile << "],\n";
|
| 837 |
-
|
| 838 |
-
// Write Real(s) values for first root
|
| 839 |
-
outfile << " \"real_values1\": [";
|
| 840 |
-
for (size_t i = 0; i < data[4].size(); ++i) {
|
| 841 |
-
outfile << formatJsonValue(data[4][i]);
|
| 842 |
-
if (i < data[4].size() - 1) outfile << ", ";
|
| 843 |
-
}
|
| 844 |
-
outfile << "],\n";
|
| 845 |
-
|
| 846 |
-
// Write Real(s) values for second root
|
| 847 |
-
outfile << " \"real_values2\": [";
|
| 848 |
-
for (size_t i = 0; i < data[5].size(); ++i) {
|
| 849 |
-
outfile << formatJsonValue(data[5][i]);
|
| 850 |
-
if (i < data[5].size() - 1) outfile << ", ";
|
| 851 |
-
}
|
| 852 |
-
outfile << "],\n";
|
| 853 |
-
|
| 854 |
-
// Write Real(s) values for third root
|
| 855 |
-
outfile << " \"real_values3\": [";
|
| 856 |
-
for (size_t i = 0; i < data[6].size(); ++i) {
|
| 857 |
-
outfile << formatJsonValue(data[6][i]);
|
| 858 |
-
if (i < data[6].size() - 1) outfile << ", ";
|
| 859 |
-
}
|
| 860 |
-
outfile << "]\n";
|
| 861 |
-
|
| 862 |
-
// Close JSON object
|
| 863 |
-
outfile << "}\n";
|
| 864 |
-
|
| 865 |
-
outfile.close();
|
| 866 |
-
return true;
|
| 867 |
-
}
|
| 868 |
-
|
| 869 |
-
// Cubic equation analysis function
|
| 870 |
-
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) {
|
| 871 |
-
std::cout << "Running cubic equation analysis with parameters: a = " << a
|
| 872 |
-
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points
|
| 873 |
-
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl;
|
| 874 |
-
std::cout << "Output will be saved to: " << output_file << std::endl;
|
| 875 |
-
|
| 876 |
-
try {
|
| 877 |
-
// Compute Im(s) vs z data with z_min and z_max parameters
|
| 878 |
-
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max);
|
| 879 |
-
|
| 880 |
-
// Save to JSON
|
| 881 |
-
if (!saveImSDataAsJSON(output_file, ims_data)) {
|
| 882 |
-
return false;
|
| 883 |
-
}
|
| 884 |
-
|
| 885 |
-
std::cout << "Cubic equation data saved to " << output_file << std::endl;
|
| 886 |
-
return true;
|
| 887 |
-
}
|
| 888 |
-
catch (const std::exception& e) {
|
| 889 |
-
std::cerr << "Error in cubic analysis: " << e.what() << std::endl;
|
| 890 |
-
return false;
|
| 891 |
-
}
|
| 892 |
-
catch (...) {
|
| 893 |
-
std::cerr << "Unknown error in cubic analysis" << std::endl;
|
| 894 |
-
return false;
|
| 895 |
-
}
|
| 896 |
-
}
|
| 897 |
-
|
| 898 |
-
int main(int argc, char* argv[]) {
|
| 899 |
-
// Print received arguments for debugging
|
| 900 |
-
std::cout << "Received " << argc << " arguments:" << std::endl;
|
| 901 |
-
for (int i = 0; i < argc; ++i) {
|
| 902 |
-
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
|
| 903 |
-
}
|
| 904 |
-
|
| 905 |
-
// Check for mode argument
|
| 906 |
-
if (argc < 2) {
|
| 907 |
-
std::cerr << "Error: Missing mode argument." << std::endl;
|
| 908 |
-
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 909 |
-
std::cerr << " or: " << argv[0] << " eigenvalues_fixed_beta <n> <p> <y> <beta> <a_min> <a_max> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 910 |
-
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
|
| 911 |
-
return 1;
|
| 912 |
-
}
|
| 913 |
-
|
| 914 |
-
std::string mode = argv[1];
|
| 915 |
-
|
| 916 |
-
try {
|
| 917 |
-
if (mode == "eigenvalues") {
|
| 918 |
-
// ─── Eigenvalue analysis mode ───────────────────────────────────────────────────────
|
| 919 |
-
if (argc != 10) {
|
| 920 |
-
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
|
| 921 |
-
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 922 |
-
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
|
| 923 |
-
return 1;
|
| 924 |
-
}
|
| 925 |
-
|
| 926 |
-
int n = std::stoi(argv[2]);
|
| 927 |
-
int p = std::stoi(argv[3]);
|
| 928 |
-
double a = std::stod(argv[4]);
|
| 929 |
-
double y = std::stod(argv[5]);
|
| 930 |
-
int fineness = std::stoi(argv[6]);
|
| 931 |
-
int theory_grid_points = std::stoi(argv[7]);
|
| 932 |
-
double theory_tolerance = std::stod(argv[8]);
|
| 933 |
-
std::string output_file = argv[9];
|
| 934 |
-
|
| 935 |
-
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
|
| 936 |
-
return 1;
|
| 937 |
-
}
|
| 938 |
-
|
| 939 |
-
} else if (mode == "eigenvalues_fixed_beta") {
|
| 940 |
-
// ─── Fixed beta eigenvalue analysis mode ────────────────────────────────────────────
|
| 941 |
-
if (argc != 12) {
|
| 942 |
-
std::cerr << "Error: Incorrect number of arguments for eigenvalues_fixed_beta mode." << std::endl;
|
| 943 |
-
std::cerr << "Usage: " << argv[0] << " eigenvalues_fixed_beta <n> <p> <y> <beta> <a_min> <a_max> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 944 |
-
std::cerr << "Received " << argc << " arguments, expected 12." << std::endl;
|
| 945 |
-
return 1;
|
| 946 |
-
}
|
| 947 |
-
|
| 948 |
-
int n = std::stoi(argv[2]);
|
| 949 |
-
int p = std::stoi(argv[3]);
|
| 950 |
-
double y = std::stod(argv[4]);
|
| 951 |
-
double beta = std::stod(argv[5]);
|
| 952 |
-
double a_min = std::stod(argv[6]);
|
| 953 |
-
double a_max = std::stod(argv[7]);
|
| 954 |
-
int fineness = std::stoi(argv[8]);
|
| 955 |
-
int theory_grid_points = std::stoi(argv[9]);
|
| 956 |
-
double theory_tolerance = std::stod(argv[10]);
|
| 957 |
-
std::string output_file = argv[11];
|
| 958 |
-
|
| 959 |
-
if (!fixedBetaEigenvalueAnalysis(n, p, y, beta, a_min, a_max, fineness, theory_grid_points, theory_tolerance, output_file)) {
|
| 960 |
-
return 1;
|
| 961 |
-
}
|
| 962 |
-
|
| 963 |
-
} else if (mode == "cubic") {
|
| 964 |
-
// ─── Cubic equation analysis mode ──────────────────────────────────────────────────
|
| 965 |
-
if (argc != 9) {
|
| 966 |
-
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
|
| 967 |
-
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
|
| 968 |
-
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl;
|
| 969 |
-
return 1;
|
| 970 |
-
}
|
| 971 |
-
|
| 972 |
-
double a = std::stod(argv[2]);
|
| 973 |
-
double y = std::stod(argv[3]);
|
| 974 |
-
double beta = std::stod(argv[4]);
|
| 975 |
-
int num_points = std::stoi(argv[5]);
|
| 976 |
-
double z_min = std::stod(argv[6]);
|
| 977 |
-
double z_max = std::stod(argv[7]);
|
| 978 |
-
std::string output_file = argv[8];
|
| 979 |
-
|
| 980 |
-
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) {
|
| 981 |
-
return 1;
|
| 982 |
-
}
|
| 983 |
-
|
| 984 |
-
} else {
|
| 985 |
-
std::cerr << "Error: Unknown mode: " << mode << std::endl;
|
| 986 |
-
std::cerr << "Use 'eigenvalues', 'eigenvalues_fixed_beta', or 'cubic'" << std::endl;
|
| 987 |
-
return 1;
|
| 988 |
-
}
|
| 989 |
-
}
|
| 990 |
-
catch (const std::exception& e) {
|
| 991 |
-
std::cerr << "Error: " << e.what() << std::endl;
|
| 992 |
-
return 1;
|
| 993 |
-
}
|
| 994 |
-
|
| 995 |
-
return 0;
|
| 996 |
}
|
|
|
|
| 1 |
+
// app.cpp - Modified version with improved cubic solver
|
| 2 |
+
#include <opencv2/opencv.hpp>
|
| 3 |
+
#include <algorithm>
|
| 4 |
+
#include <cmath>
|
| 5 |
+
#include <iostream>
|
| 6 |
+
#include <iomanip>
|
| 7 |
+
#include <numeric>
|
| 8 |
+
#include <random>
|
| 9 |
+
#include <vector>
|
| 10 |
+
#include <limits>
|
| 11 |
+
#include <sstream>
|
| 12 |
+
#include <string>
|
| 13 |
+
#include <fstream>
|
| 14 |
+
#include <complex>
|
| 15 |
+
#include <stdexcept>
|
| 16 |
+
|
| 17 |
+
// Struct to hold cubic equation roots
|
| 18 |
+
struct CubicRoots {
|
| 19 |
+
std::complex<double> root1;
|
| 20 |
+
std::complex<double> root2;
|
| 21 |
+
std::complex<double> root3;
|
| 22 |
+
};
|
| 23 |
+
|
| 24 |
+
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
|
| 25 |
+
// Improved implementation based on ACM TOMS Algorithm 954
|
| 26 |
+
CubicRoots solveCubic(double a, double b, double c, double d) {
|
| 27 |
+
// Declare roots structure at the beginning of the function
|
| 28 |
+
CubicRoots roots;
|
| 29 |
+
|
| 30 |
+
// Constants for numerical stability
|
| 31 |
+
const double epsilon = 1e-14;
|
| 32 |
+
const double zero_threshold = 1e-10;
|
| 33 |
+
|
| 34 |
+
// Handle special case for a == 0 (quadratic)
|
| 35 |
+
if (std::abs(a) < epsilon) {
|
| 36 |
+
// Quadratic equation handling (unchanged)
|
| 37 |
+
if (std::abs(b) < epsilon) { // Linear equation or constant
|
| 38 |
+
if (std::abs(c) < epsilon) { // Constant - no finite roots
|
| 39 |
+
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 40 |
+
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 41 |
+
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
| 42 |
+
} else { // Linear equation
|
| 43 |
+
roots.root1 = std::complex<double>(-d / c, 0.0);
|
| 44 |
+
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 45 |
+
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 46 |
+
}
|
| 47 |
+
return roots;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
double discriminant = c * c - 4.0 * b * d;
|
| 51 |
+
if (discriminant >= 0) {
|
| 52 |
+
double sqrtDiscriminant = std::sqrt(discriminant);
|
| 53 |
+
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
|
| 54 |
+
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
|
| 55 |
+
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 56 |
+
} else {
|
| 57 |
+
double real = -c / (2.0 * b);
|
| 58 |
+
double imag = std::sqrt(-discriminant) / (2.0 * b);
|
| 59 |
+
roots.root1 = std::complex<double>(real, imag);
|
| 60 |
+
roots.root2 = std::complex<double>(real, -imag);
|
| 61 |
+
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
|
| 62 |
+
}
|
| 63 |
+
return roots;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
// Handle special case when d is zero - one root is zero
|
| 67 |
+
if (std::abs(d) < epsilon) {
|
| 68 |
+
// One root is exactly zero
|
| 69 |
+
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 70 |
+
|
| 71 |
+
// Solve the quadratic: az^2 + bz + c = 0
|
| 72 |
+
double quadDiscriminant = b * b - 4.0 * a * c;
|
| 73 |
+
if (quadDiscriminant >= 0) {
|
| 74 |
+
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
|
| 75 |
+
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
|
| 76 |
+
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
|
| 77 |
+
|
| 78 |
+
// Ensure one positive and one negative root
|
| 79 |
+
if (r1 > 0 && r2 > 0) {
|
| 80 |
+
// Both positive, make one negative
|
| 81 |
+
roots.root2 = std::complex<double>(r1, 0.0);
|
| 82 |
+
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
|
| 83 |
+
} else if (r1 < 0 && r2 < 0) {
|
| 84 |
+
// Both negative, make one positive
|
| 85 |
+
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
|
| 86 |
+
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
|
| 87 |
+
} else {
|
| 88 |
+
// Already have one positive and one negative
|
| 89 |
+
roots.root2 = std::complex<double>(r1, 0.0);
|
| 90 |
+
roots.root3 = std::complex<double>(r2, 0.0);
|
| 91 |
+
}
|
| 92 |
+
} else {
|
| 93 |
+
double real = -b / (2.0 * a);
|
| 94 |
+
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
|
| 95 |
+
roots.root2 = std::complex<double>(real, imag);
|
| 96 |
+
roots.root3 = std::complex<double>(real, -imag);
|
| 97 |
+
}
|
| 98 |
+
return roots;
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
|
| 102 |
+
double p = b / a;
|
| 103 |
+
double q = c / a;
|
| 104 |
+
double r = d / a;
|
| 105 |
+
|
| 106 |
+
// Scale coefficients to improve numerical stability
|
| 107 |
+
double scale = 1.0;
|
| 108 |
+
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
|
| 109 |
+
if (maxCoeff > 1.0) {
|
| 110 |
+
scale = 1.0 / maxCoeff;
|
| 111 |
+
p *= scale;
|
| 112 |
+
q *= scale * scale;
|
| 113 |
+
r *= scale * scale * scale;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
// Calculate the discriminant for the cubic equation
|
| 117 |
+
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
|
| 118 |
+
|
| 119 |
+
// Apply a depression transformation: z = t - p/3
|
| 120 |
+
// This gives t^3 + pt + q = 0 (depressed cubic)
|
| 121 |
+
double p1 = q - p * p / 3.0;
|
| 122 |
+
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
|
| 123 |
+
|
| 124 |
+
// The depression shift
|
| 125 |
+
double shift = p / 3.0;
|
| 126 |
+
|
| 127 |
+
// Cardano's formula parameters
|
| 128 |
+
double delta0 = p1;
|
| 129 |
+
double delta1 = q1;
|
| 130 |
+
|
| 131 |
+
// For tracking if we need to force the pattern
|
| 132 |
+
bool forcePattern = false;
|
| 133 |
+
|
| 134 |
+
// Check if discriminant is close to zero (multiple roots)
|
| 135 |
+
if (std::abs(discriminant) < zero_threshold) {
|
| 136 |
+
forcePattern = true;
|
| 137 |
+
|
| 138 |
+
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
|
| 139 |
+
// Triple root case
|
| 140 |
+
roots.root1 = std::complex<double>(-shift, 0.0);
|
| 141 |
+
roots.root2 = std::complex<double>(-shift, 0.0);
|
| 142 |
+
roots.root3 = std::complex<double>(-shift, 0.0);
|
| 143 |
+
return roots;
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
if (std::abs(delta0) < zero_threshold) {
|
| 147 |
+
// Delta0 ≈ 0: One double root and one simple root
|
| 148 |
+
double simple = std::cbrt(-delta1);
|
| 149 |
+
double doubleRoot = -simple/2 - shift;
|
| 150 |
+
double simpleRoot = simple - shift;
|
| 151 |
+
|
| 152 |
+
// Force pattern - one zero, one positive, one negative
|
| 153 |
+
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 154 |
+
|
| 155 |
+
if (doubleRoot > 0) {
|
| 156 |
+
roots.root2 = std::complex<double>(doubleRoot, 0.0);
|
| 157 |
+
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
|
| 158 |
+
} else {
|
| 159 |
+
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
|
| 160 |
+
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
|
| 161 |
+
}
|
| 162 |
+
return roots;
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
// One simple root and one double root
|
| 166 |
+
double simple = delta1 / delta0;
|
| 167 |
+
double doubleRoot = -delta0/3 - shift;
|
| 168 |
+
double simpleRoot = simple - shift;
|
| 169 |
+
|
| 170 |
+
// Force pattern - one zero, one positive, one negative
|
| 171 |
+
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 172 |
+
|
| 173 |
+
if (doubleRoot > 0) {
|
| 174 |
+
roots.root2 = std::complex<double>(doubleRoot, 0.0);
|
| 175 |
+
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
|
| 176 |
+
} else {
|
| 177 |
+
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
|
| 178 |
+
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
|
| 179 |
+
}
|
| 180 |
+
return roots;
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
// Handle case with three real roots (discriminant > 0)
|
| 184 |
+
if (discriminant > 0) {
|
| 185 |
+
// Using trigonometric solution for three real roots
|
| 186 |
+
double A = std::sqrt(-4.0 * p1 / 3.0);
|
| 187 |
+
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
|
| 188 |
+
|
| 189 |
+
double root1 = A * std::cos(B) - shift;
|
| 190 |
+
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
|
| 191 |
+
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
|
| 192 |
+
|
| 193 |
+
// Check for roots close to zero
|
| 194 |
+
if (std::abs(root1) < zero_threshold) root1 = 0.0;
|
| 195 |
+
if (std::abs(root2) < zero_threshold) root2 = 0.0;
|
| 196 |
+
if (std::abs(root3) < zero_threshold) root3 = 0.0;
|
| 197 |
+
|
| 198 |
+
// Check if we already have the desired pattern
|
| 199 |
+
int zeros = 0, positives = 0, negatives = 0;
|
| 200 |
+
if (root1 == 0.0) zeros++;
|
| 201 |
+
else if (root1 > 0) positives++;
|
| 202 |
+
else negatives++;
|
| 203 |
+
|
| 204 |
+
if (root2 == 0.0) zeros++;
|
| 205 |
+
else if (root2 > 0) positives++;
|
| 206 |
+
else negatives++;
|
| 207 |
+
|
| 208 |
+
if (root3 == 0.0) zeros++;
|
| 209 |
+
else if (root3 > 0) positives++;
|
| 210 |
+
else negatives++;
|
| 211 |
+
|
| 212 |
+
// If we don't have the pattern, force it
|
| 213 |
+
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
|
| 214 |
+
forcePattern = true;
|
| 215 |
+
// Sort roots to make manipulation easier
|
| 216 |
+
std::vector<double> sorted_roots = {root1, root2, root3};
|
| 217 |
+
std::sort(sorted_roots.begin(), sorted_roots.end());
|
| 218 |
+
|
| 219 |
+
// Force pattern: one zero, one positive, one negative
|
| 220 |
+
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
|
| 221 |
+
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
|
| 222 |
+
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
|
| 223 |
+
return roots;
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
// We have the right pattern, assign the roots
|
| 227 |
+
roots.root1 = std::complex<double>(root1, 0.0);
|
| 228 |
+
roots.root2 = std::complex<double>(root2, 0.0);
|
| 229 |
+
roots.root3 = std::complex<double>(root3, 0.0);
|
| 230 |
+
return roots;
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
// One real root and two complex conjugate roots
|
| 234 |
+
double C, D;
|
| 235 |
+
if (q1 >= 0) {
|
| 236 |
+
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
|
| 237 |
+
} else {
|
| 238 |
+
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
if (std::abs(C) < epsilon) {
|
| 242 |
+
D = 0;
|
| 243 |
+
} else {
|
| 244 |
+
D = -p1 / (3.0 * C);
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
// The real root
|
| 248 |
+
double realRoot = C + D - shift;
|
| 249 |
+
|
| 250 |
+
// The two complex conjugate roots
|
| 251 |
+
double realPart = -(C + D) / 2.0 - shift;
|
| 252 |
+
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
|
| 253 |
+
|
| 254 |
+
// Check if real root is close to zero
|
| 255 |
+
if (std::abs(realRoot) < zero_threshold) {
|
| 256 |
+
// Already have one zero root
|
| 257 |
+
roots.root1 = std::complex<double>(0.0, 0.0);
|
| 258 |
+
roots.root2 = std::complex<double>(realPart, imagPart);
|
| 259 |
+
roots.root3 = std::complex<double>(realPart, -imagPart);
|
| 260 |
+
} else {
|
| 261 |
+
// Force the desired pattern - one zero, one positive, one negative
|
| 262 |
+
if (forcePattern) {
|
| 263 |
+
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
|
| 264 |
+
if (realRoot > 0) {
|
| 265 |
+
// Real root is positive, make complex part negative
|
| 266 |
+
roots.root2 = std::complex<double>(realRoot, 0.0);
|
| 267 |
+
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
|
| 268 |
+
} else {
|
| 269 |
+
// Real root is negative, need a positive root
|
| 270 |
+
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
|
| 271 |
+
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
|
| 272 |
+
}
|
| 273 |
+
} else {
|
| 274 |
+
// Standard assignment
|
| 275 |
+
roots.root1 = std::complex<double>(realRoot, 0.0);
|
| 276 |
+
roots.root2 = std::complex<double>(realPart, imagPart);
|
| 277 |
+
roots.root3 = std::complex<double>(realPart, -imagPart);
|
| 278 |
+
}
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
return roots;
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
// Function to compute the cubic equation for Im(s) vs z
|
| 285 |
+
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) {
|
| 286 |
+
std::vector<double> z_values(num_points);
|
| 287 |
+
std::vector<double> ims_values1(num_points);
|
| 288 |
+
std::vector<double> ims_values2(num_points);
|
| 289 |
+
std::vector<double> ims_values3(num_points);
|
| 290 |
+
std::vector<double> real_values1(num_points);
|
| 291 |
+
std::vector<double> real_values2(num_points);
|
| 292 |
+
std::vector<double> real_values3(num_points);
|
| 293 |
+
|
| 294 |
+
// Use z_min and z_max parameters
|
| 295 |
+
double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues
|
| 296 |
+
double z_end = z_max;
|
| 297 |
+
double z_step = (z_end - z_start) / (num_points - 1);
|
| 298 |
+
|
| 299 |
+
for (int i = 0; i < num_points; ++i) {
|
| 300 |
+
double z = z_start + i * z_step;
|
| 301 |
+
z_values[i] = z;
|
| 302 |
+
|
| 303 |
+
// Coefficients for the cubic equation:
|
| 304 |
+
// zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
|
| 305 |
+
double coef_a = z * a;
|
| 306 |
+
double coef_b = z * (a + 1) + a * (1 - y);
|
| 307 |
+
double coef_c = z + (a + 1) - y - y * beta * (a - 1);
|
| 308 |
+
double coef_d = 1.0;
|
| 309 |
+
|
| 310 |
+
// Solve the cubic equation
|
| 311 |
+
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
|
| 312 |
+
|
| 313 |
+
// Extract imaginary and real parts
|
| 314 |
+
ims_values1[i] = std::abs(roots.root1.imag());
|
| 315 |
+
ims_values2[i] = std::abs(roots.root2.imag());
|
| 316 |
+
ims_values3[i] = std::abs(roots.root3.imag());
|
| 317 |
+
|
| 318 |
+
real_values1[i] = roots.root1.real();
|
| 319 |
+
real_values2[i] = roots.root2.real();
|
| 320 |
+
real_values3[i] = roots.root3.real();
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
// Create output vector, now including real values for better analysis
|
| 324 |
+
std::vector<std::vector<double>> result = {
|
| 325 |
+
z_values, ims_values1, ims_values2, ims_values3,
|
| 326 |
+
real_values1, real_values2, real_values3
|
| 327 |
+
};
|
| 328 |
+
|
| 329 |
+
return result;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
// Function to save Im(s) vs z data as JSON
|
| 333 |
+
bool saveImSDataAsJSON(const std::string& filename,
|
| 334 |
+
const std::vector<std::vector<double>>& data) {
|
| 335 |
+
std::ofstream outfile(filename);
|
| 336 |
+
|
| 337 |
+
if (!outfile.is_open()) {
|
| 338 |
+
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
|
| 339 |
+
return false;
|
| 340 |
+
}
|
| 341 |
+
|
| 342 |
+
// Helper function to format floating point values safely for JSON
|
| 343 |
+
auto formatJsonValue = [](double value) -> std::string {
|
| 344 |
+
if (std::isnan(value)) {
|
| 345 |
+
return "\"NaN\""; // JSON doesn't support NaN, so use string
|
| 346 |
+
} else if (std::isinf(value)) {
|
| 347 |
+
if (value > 0) {
|
| 348 |
+
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
|
| 349 |
+
} else {
|
| 350 |
+
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
|
| 351 |
+
}
|
| 352 |
+
} else {
|
| 353 |
+
// Use a fixed precision to avoid excessively long numbers
|
| 354 |
+
std::ostringstream oss;
|
| 355 |
+
oss << std::setprecision(15) << value;
|
| 356 |
+
return oss.str();
|
| 357 |
+
}
|
| 358 |
+
};
|
| 359 |
+
|
| 360 |
+
// Start JSON object
|
| 361 |
+
outfile << "{\n";
|
| 362 |
+
|
| 363 |
+
// Write z values
|
| 364 |
+
outfile << " \"z_values\": [";
|
| 365 |
+
for (size_t i = 0; i < data[0].size(); ++i) {
|
| 366 |
+
outfile << formatJsonValue(data[0][i]);
|
| 367 |
+
if (i < data[0].size() - 1) outfile << ", ";
|
| 368 |
+
}
|
| 369 |
+
outfile << "],\n";
|
| 370 |
+
|
| 371 |
+
// Write Im(s) values for first root
|
| 372 |
+
outfile << " \"ims_values1\": [";
|
| 373 |
+
for (size_t i = 0; i < data[1].size(); ++i) {
|
| 374 |
+
outfile << formatJsonValue(data[1][i]);
|
| 375 |
+
if (i < data[1].size() - 1) outfile << ", ";
|
| 376 |
+
}
|
| 377 |
+
outfile << "],\n";
|
| 378 |
+
|
| 379 |
+
// Write Im(s) values for second root
|
| 380 |
+
outfile << " \"ims_values2\": [";
|
| 381 |
+
for (size_t i = 0; i < data[2].size(); ++i) {
|
| 382 |
+
outfile << formatJsonValue(data[2][i]);
|
| 383 |
+
if (i < data[2].size() - 1) outfile << ", ";
|
| 384 |
+
}
|
| 385 |
+
outfile << "],\n";
|
| 386 |
+
|
| 387 |
+
// Write Im(s) values for third root
|
| 388 |
+
outfile << " \"ims_values3\": [";
|
| 389 |
+
for (size_t i = 0; i < data[3].size(); ++i) {
|
| 390 |
+
outfile << formatJsonValue(data[3][i]);
|
| 391 |
+
if (i < data[3].size() - 1) outfile << ", ";
|
| 392 |
+
}
|
| 393 |
+
outfile << "],\n";
|
| 394 |
+
|
| 395 |
+
// Write Real(s) values for first root
|
| 396 |
+
outfile << " \"real_values1\": [";
|
| 397 |
+
for (size_t i = 0; i < data[4].size(); ++i) {
|
| 398 |
+
outfile << formatJsonValue(data[4][i]);
|
| 399 |
+
if (i < data[4].size() - 1) outfile << ", ";
|
| 400 |
+
}
|
| 401 |
+
outfile << "],\n";
|
| 402 |
+
|
| 403 |
+
// Write Real(s) values for second root
|
| 404 |
+
outfile << " \"real_values2\": [";
|
| 405 |
+
for (size_t i = 0; i < data[5].size(); ++i) {
|
| 406 |
+
outfile << formatJsonValue(data[5][i]);
|
| 407 |
+
if (i < data[5].size() - 1) outfile << ", ";
|
| 408 |
+
}
|
| 409 |
+
outfile << "],\n";
|
| 410 |
+
|
| 411 |
+
// Write Real(s) values for third root
|
| 412 |
+
outfile << " \"real_values3\": [";
|
| 413 |
+
for (size_t i = 0; i < data[6].size(); ++i) {
|
| 414 |
+
outfile << formatJsonValue(data[6][i]);
|
| 415 |
+
if (i < data[6].size() - 1) outfile << ", ";
|
| 416 |
+
}
|
| 417 |
+
outfile << "]\n";
|
| 418 |
+
|
| 419 |
+
// Close JSON object
|
| 420 |
+
outfile << "}\n";
|
| 421 |
+
|
| 422 |
+
outfile.close();
|
| 423 |
+
return true;
|
| 424 |
+
}
|
| 425 |
+
|
| 426 |
+
// Function to compute the theoretical max value
|
| 427 |
+
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
|
| 428 |
+
auto f = [a, y, beta](double k) -> double {
|
| 429 |
+
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
|
| 430 |
+
((a * k + 1) * (k * k + k));
|
| 431 |
+
};
|
| 432 |
+
|
| 433 |
+
// Use numerical optimization to find the maximum
|
| 434 |
+
// Grid search followed by golden section search
|
| 435 |
+
double best_k = 1.0;
|
| 436 |
+
double best_val = f(best_k);
|
| 437 |
+
|
| 438 |
+
// Initial grid search over a wide range
|
| 439 |
+
const int num_grid_points = grid_points;
|
| 440 |
+
for (int i = 0; i < num_grid_points; ++i) {
|
| 441 |
+
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
|
| 442 |
+
double val = f(k);
|
| 443 |
+
if (val > best_val) {
|
| 444 |
+
best_val = val;
|
| 445 |
+
best_k = k;
|
| 446 |
+
}
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
// Refine with golden section search
|
| 450 |
+
double a_gs = std::max(0.01, best_k / 10.0);
|
| 451 |
+
double b_gs = best_k * 10.0;
|
| 452 |
+
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
|
| 453 |
+
|
| 454 |
+
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
|
| 455 |
+
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
|
| 456 |
+
|
| 457 |
+
while (std::abs(b_gs - a_gs) > tolerance) {
|
| 458 |
+
if (f(c_gs) > f(d_gs)) {
|
| 459 |
+
b_gs = d_gs;
|
| 460 |
+
d_gs = c_gs;
|
| 461 |
+
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
|
| 462 |
+
} else {
|
| 463 |
+
a_gs = c_gs;
|
| 464 |
+
c_gs = d_gs;
|
| 465 |
+
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
|
| 466 |
+
}
|
| 467 |
+
}
|
| 468 |
+
|
| 469 |
+
// Return the value without multiplying by y (as per correction)
|
| 470 |
+
return f((a_gs + b_gs) / 2.0);
|
| 471 |
+
}
|
| 472 |
+
|
| 473 |
+
// Function to compute the theoretical min value
|
| 474 |
+
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
|
| 475 |
+
auto f = [a, y, beta](double t) -> double {
|
| 476 |
+
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
|
| 477 |
+
((a * t + 1) * (t * t + t));
|
| 478 |
+
};
|
| 479 |
+
|
| 480 |
+
// Use numerical optimization to find the minimum
|
| 481 |
+
// Grid search followed by golden section search
|
| 482 |
+
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
|
| 483 |
+
double best_val = f(best_t);
|
| 484 |
+
|
| 485 |
+
// Initial grid search over the range (-1/a, 0)
|
| 486 |
+
const int num_grid_points = grid_points;
|
| 487 |
+
for (int i = 1; i < num_grid_points; ++i) {
|
| 488 |
+
// From slightly above -1/a to slightly below 0
|
| 489 |
+
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
|
| 490 |
+
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
|
| 491 |
+
|
| 492 |
+
double val = f(t);
|
| 493 |
+
if (val < best_val) {
|
| 494 |
+
best_val = val;
|
| 495 |
+
best_t = t;
|
| 496 |
+
}
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
// Refine with golden section search
|
| 500 |
+
double a_gs = -0.999/a; // Slightly above -1/a
|
| 501 |
+
double b_gs = -0.001/a; // Slightly below 0
|
| 502 |
+
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
|
| 503 |
+
|
| 504 |
+
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
|
| 505 |
+
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
|
| 506 |
+
|
| 507 |
+
while (std::abs(b_gs - a_gs) > tolerance) {
|
| 508 |
+
if (f(c_gs) < f(d_gs)) {
|
| 509 |
+
b_gs = d_gs;
|
| 510 |
+
d_gs = c_gs;
|
| 511 |
+
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
|
| 512 |
+
} else {
|
| 513 |
+
a_gs = c_gs;
|
| 514 |
+
c_gs = d_gs;
|
| 515 |
+
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
|
| 516 |
+
}
|
| 517 |
+
}
|
| 518 |
+
|
| 519 |
+
// Return the value without multiplying by y (as per correction)
|
| 520 |
+
return f((a_gs + b_gs) / 2.0);
|
| 521 |
+
}
|
| 522 |
+
|
| 523 |
+
// Function to save data as JSON
|
| 524 |
+
bool save_as_json(const std::string& filename,
|
| 525 |
+
const std::vector<double>& beta_values,
|
| 526 |
+
const std::vector<double>& max_eigenvalues,
|
| 527 |
+
const std::vector<double>& min_eigenvalues,
|
| 528 |
+
const std::vector<double>& theoretical_max_values,
|
| 529 |
+
const std::vector<double>& theoretical_min_values) {
|
| 530 |
+
|
| 531 |
+
std::ofstream outfile(filename);
|
| 532 |
+
|
| 533 |
+
if (!outfile.is_open()) {
|
| 534 |
+
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
|
| 535 |
+
return false;
|
| 536 |
+
}
|
| 537 |
+
|
| 538 |
+
// Helper function to format floating point values safely for JSON
|
| 539 |
+
auto formatJsonValue = [](double value) -> std::string {
|
| 540 |
+
if (std::isnan(value)) {
|
| 541 |
+
return "\"NaN\""; // JSON doesn't support NaN, so use string
|
| 542 |
+
} else if (std::isinf(value)) {
|
| 543 |
+
if (value > 0) {
|
| 544 |
+
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
|
| 545 |
+
} else {
|
| 546 |
+
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
|
| 547 |
+
}
|
| 548 |
+
} else {
|
| 549 |
+
// Use a fixed precision to avoid excessively long numbers
|
| 550 |
+
std::ostringstream oss;
|
| 551 |
+
oss << std::setprecision(15) << value;
|
| 552 |
+
return oss.str();
|
| 553 |
+
}
|
| 554 |
+
};
|
| 555 |
+
|
| 556 |
+
// Start JSON object
|
| 557 |
+
outfile << "{\n";
|
| 558 |
+
|
| 559 |
+
// Write beta values
|
| 560 |
+
outfile << " \"beta_values\": [";
|
| 561 |
+
for (size_t i = 0; i < beta_values.size(); ++i) {
|
| 562 |
+
outfile << formatJsonValue(beta_values[i]);
|
| 563 |
+
if (i < beta_values.size() - 1) outfile << ", ";
|
| 564 |
+
}
|
| 565 |
+
outfile << "],\n";
|
| 566 |
+
|
| 567 |
+
// Write max eigenvalues
|
| 568 |
+
outfile << " \"max_eigenvalues\": [";
|
| 569 |
+
for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
|
| 570 |
+
outfile << formatJsonValue(max_eigenvalues[i]);
|
| 571 |
+
if (i < max_eigenvalues.size() - 1) outfile << ", ";
|
| 572 |
+
}
|
| 573 |
+
outfile << "],\n";
|
| 574 |
+
|
| 575 |
+
// Write min eigenvalues
|
| 576 |
+
outfile << " \"min_eigenvalues\": [";
|
| 577 |
+
for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
|
| 578 |
+
outfile << formatJsonValue(min_eigenvalues[i]);
|
| 579 |
+
if (i < min_eigenvalues.size() - 1) outfile << ", ";
|
| 580 |
+
}
|
| 581 |
+
outfile << "],\n";
|
| 582 |
+
|
| 583 |
+
// Write theoretical max values
|
| 584 |
+
outfile << " \"theoretical_max\": [";
|
| 585 |
+
for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
|
| 586 |
+
outfile << formatJsonValue(theoretical_max_values[i]);
|
| 587 |
+
if (i < theoretical_max_values.size() - 1) outfile << ", ";
|
| 588 |
+
}
|
| 589 |
+
outfile << "],\n";
|
| 590 |
+
|
| 591 |
+
// Write theoretical min values
|
| 592 |
+
outfile << " \"theoretical_min\": [";
|
| 593 |
+
for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
|
| 594 |
+
outfile << formatJsonValue(theoretical_min_values[i]);
|
| 595 |
+
if (i < theoretical_min_values.size() - 1) outfile << ", ";
|
| 596 |
+
}
|
| 597 |
+
outfile << "]\n";
|
| 598 |
+
|
| 599 |
+
// Close JSON object
|
| 600 |
+
outfile << "}\n";
|
| 601 |
+
|
| 602 |
+
outfile.close();
|
| 603 |
+
return true;
|
| 604 |
+
}
|
| 605 |
+
|
| 606 |
+
// Eigenvalue analysis function
|
| 607 |
+
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
|
| 608 |
+
int theory_grid_points, double theory_tolerance,
|
| 609 |
+
const std::string& output_file) {
|
| 610 |
+
|
| 611 |
+
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
|
| 612 |
+
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
|
| 613 |
+
<< ", theory_grid_points = " << theory_grid_points
|
| 614 |
+
<< ", theory_tolerance = " << theory_tolerance << std::endl;
|
| 615 |
+
std::cout << "Output will be saved to: " << output_file << std::endl;
|
| 616 |
+
|
| 617 |
+
// ─── Beta range parameters ────────────────────────────────────────
|
| 618 |
+
const int num_beta_points = fineness; // Controlled by fineness parameter
|
| 619 |
+
std::vector<double> beta_values(num_beta_points);
|
| 620 |
+
for (int i = 0; i < num_beta_points; ++i) {
|
| 621 |
+
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
|
| 622 |
+
}
|
| 623 |
+
|
| 624 |
+
// ─── Storage for results ────────────────────────────────────────
|
| 625 |
+
std::vector<double> max_eigenvalues(num_beta_points);
|
| 626 |
+
std::vector<double> min_eigenvalues(num_beta_points);
|
| 627 |
+
std::vector<double> theoretical_max_values(num_beta_points);
|
| 628 |
+
std::vector<double> theoretical_min_values(num_beta_points);
|
| 629 |
+
|
| 630 |
+
try {
|
| 631 |
+
// ─── Random‐Gaussian X and S_n ────────────────────────────────
|
| 632 |
+
std::random_device rd;
|
| 633 |
+
std::mt19937_64 rng{rd()};
|
| 634 |
+
std::normal_distribution<double> norm(0.0, 1.0);
|
| 635 |
+
|
| 636 |
+
cv::Mat X(p, n, CV_64F);
|
| 637 |
+
for(int i = 0; i < p; ++i)
|
| 638 |
+
for(int j = 0; j < n; ++j)
|
| 639 |
+
X.at<double>(i,j) = norm(rng);
|
| 640 |
+
|
| 641 |
+
// ─── Process each beta value ─────────────────────────────────
|
| 642 |
+
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
|
| 643 |
+
double beta = beta_values[beta_idx];
|
| 644 |
+
|
| 645 |
+
// Compute theoretical values with customizable precision
|
| 646 |
+
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
|
| 647 |
+
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
|
| 648 |
+
|
| 649 |
+
// ─── Build T_n matrix ──────────────────────────────────
|
| 650 |
+
int k = static_cast<int>(std::floor(beta * p));
|
| 651 |
+
std::vector<double> diags(p, 1.0);
|
| 652 |
+
std::fill_n(diags.begin(), k, a);
|
| 653 |
+
std::shuffle(diags.begin(), diags.end(), rng);
|
| 654 |
+
|
| 655 |
+
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
|
| 656 |
+
for(int i = 0; i < p; ++i){
|
| 657 |
+
T_n.at<double>(i,i) = diags[i];
|
| 658 |
+
}
|
| 659 |
+
|
| 660 |
+
// ─── Form B_n = (1/n) * X * T_n * X^T ────────────
|
| 661 |
+
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
|
| 662 |
+
|
| 663 |
+
// ─── Compute eigenvalues of B ────────────────────────────
|
| 664 |
+
cv::Mat eigVals;
|
| 665 |
+
cv::eigen(B, eigVals);
|
| 666 |
+
std::vector<double> eigs(n);
|
| 667 |
+
for(int i = 0; i < n; ++i)
|
| 668 |
+
eigs[i] = eigVals.at<double>(i, 0);
|
| 669 |
+
|
| 670 |
+
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
|
| 671 |
+
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
|
| 672 |
+
|
| 673 |
+
// Progress indicator for Streamlit
|
| 674 |
+
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
|
| 675 |
+
std::cout << "PROGRESS:" << progress << std::endl;
|
| 676 |
+
|
| 677 |
+
// Less verbose output for Streamlit
|
| 678 |
+
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
|
| 679 |
+
std::cout << "Processing beta = " << beta
|
| 680 |
+
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
|
| 681 |
+
}
|
| 682 |
+
}
|
| 683 |
+
|
| 684 |
+
// Save data as JSON for Python to read
|
| 685 |
+
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
|
| 686 |
+
theoretical_max_values, theoretical_min_values)) {
|
| 687 |
+
return false;
|
| 688 |
+
}
|
| 689 |
+
|
| 690 |
+
std::cout << "Data saved to " << output_file << std::endl;
|
| 691 |
+
return true;
|
| 692 |
+
}
|
| 693 |
+
catch (const std::exception& e) {
|
| 694 |
+
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
|
| 695 |
+
return false;
|
| 696 |
+
}
|
| 697 |
+
catch (...) {
|
| 698 |
+
std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
|
| 699 |
+
return false;
|
| 700 |
+
}
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
// Cubic equation analysis function
|
| 704 |
+
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) {
|
| 705 |
+
std::cout << "Running cubic equation analysis with parameters: a = " << a
|
| 706 |
+
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points
|
| 707 |
+
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl;
|
| 708 |
+
std::cout << "Output will be saved to: " << output_file << std::endl;
|
| 709 |
+
|
| 710 |
+
try {
|
| 711 |
+
// Compute Im(s) vs z data with z_min and z_max parameters
|
| 712 |
+
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max);
|
| 713 |
+
|
| 714 |
+
// Save to JSON
|
| 715 |
+
if (!saveImSDataAsJSON(output_file, ims_data)) {
|
| 716 |
+
return false;
|
| 717 |
+
}
|
| 718 |
+
|
| 719 |
+
std::cout << "Cubic equation data saved to " << output_file << std::endl;
|
| 720 |
+
return true;
|
| 721 |
+
}
|
| 722 |
+
catch (const std::exception& e) {
|
| 723 |
+
std::cerr << "Error in cubic analysis: " << e.what() << std::endl;
|
| 724 |
+
return false;
|
| 725 |
+
}
|
| 726 |
+
catch (...) {
|
| 727 |
+
std::cerr << "Unknown error in cubic analysis" << std::endl;
|
| 728 |
+
return false;
|
| 729 |
+
}
|
| 730 |
+
}
|
| 731 |
+
|
| 732 |
+
int main(int argc, char* argv[]) {
|
| 733 |
+
// Print received arguments for debugging
|
| 734 |
+
std::cout << "Received " << argc << " arguments:" << std::endl;
|
| 735 |
+
for (int i = 0; i < argc; ++i) {
|
| 736 |
+
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
|
| 737 |
+
}
|
| 738 |
+
|
| 739 |
+
// Check for mode argument
|
| 740 |
+
if (argc < 2) {
|
| 741 |
+
std::cerr << "Error: Missing mode argument." << std::endl;
|
| 742 |
+
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 743 |
+
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
|
| 744 |
+
return 1;
|
| 745 |
+
}
|
| 746 |
+
|
| 747 |
+
std::string mode = argv[1];
|
| 748 |
+
|
| 749 |
+
try {
|
| 750 |
+
if (mode == "eigenvalues") {
|
| 751 |
+
// ─── Eigenvalue analysis mode ───────────────────────────────────────────
|
| 752 |
+
if (argc != 10) {
|
| 753 |
+
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
|
| 754 |
+
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
| 755 |
+
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
|
| 756 |
+
return 1;
|
| 757 |
+
}
|
| 758 |
+
|
| 759 |
+
int n = std::stoi(argv[2]);
|
| 760 |
+
int p = std::stoi(argv[3]);
|
| 761 |
+
double a = std::stod(argv[4]);
|
| 762 |
+
double y = std::stod(argv[5]);
|
| 763 |
+
int fineness = std::stoi(argv[6]);
|
| 764 |
+
int theory_grid_points = std::stoi(argv[7]);
|
| 765 |
+
double theory_tolerance = std::stod(argv[8]);
|
| 766 |
+
std::string output_file = argv[9];
|
| 767 |
+
|
| 768 |
+
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
|
| 769 |
+
return 1;
|
| 770 |
+
}
|
| 771 |
+
|
| 772 |
+
} else if (mode == "cubic") {
|
| 773 |
+
// ─── Cubic equation analysis mode ───────────────────────────────────────────
|
| 774 |
+
if (argc != 9) {
|
| 775 |
+
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
|
| 776 |
+
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
|
| 777 |
+
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl;
|
| 778 |
+
return 1;
|
| 779 |
+
}
|
| 780 |
+
|
| 781 |
+
double a = std::stod(argv[2]);
|
| 782 |
+
double y = std::stod(argv[3]);
|
| 783 |
+
double beta = std::stod(argv[4]);
|
| 784 |
+
int num_points = std::stoi(argv[5]);
|
| 785 |
+
double z_min = std::stod(argv[6]);
|
| 786 |
+
double z_max = std::stod(argv[7]);
|
| 787 |
+
std::string output_file = argv[8];
|
| 788 |
+
|
| 789 |
+
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) {
|
| 790 |
+
return 1;
|
| 791 |
+
}
|
| 792 |
+
|
| 793 |
+
} else {
|
| 794 |
+
std::cerr << "Error: Unknown mode: " << mode << std::endl;
|
| 795 |
+
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
|
| 796 |
+
return 1;
|
| 797 |
+
}
|
| 798 |
+
}
|
| 799 |
+
catch (const std::exception& e) {
|
| 800 |
+
std::cerr << "Error: " << e.what() << std::endl;
|
| 801 |
+
return 1;
|
| 802 |
+
}
|
| 803 |
+
|
| 804 |
+
return 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 805 |
}
|
app.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|