bbq / app.py
euler03's picture
with offline
d6eb293 verified
import os
import json
import random
import gradio as gr
import torch
from llama_cpp import Llama
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
AutoModelForMultipleChoice
)
# -------------------------------------------------------
# 1️⃣ Setup: Device
# -------------------------------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
if device == "cuda":
print("GPU Name:", torch.cuda.get_device_name(0))
# -------------------------------------------------------
# 2️⃣ Text Objectivity Analysis (Sequence Classification)
# -------------------------------------------------------
MODELS = {
"Aubins/distil-bumble-bert": "Aubins/distil-bumble-bert",
}
id2label = {0: "BIASED", 1: "NEUTRAL"}
label2id = {"BIASED": 0, "NEUTRAL": 1}
loaded_models = {}
def load_model(model_name: str):
"""Load and cache a sequence classification model for text objectivity analysis."""
if model_name not in loaded_models:
try:
model_path = MODELS[model_name]
model = AutoModelForSequenceClassification.from_pretrained(
model_path,
num_labels=2,
id2label=id2label,
label2id=label2id
).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
loaded_models[model_name] = (model, tokenizer)
return model, tokenizer
except Exception as e:
return f"Error loading model: {str(e)}"
return loaded_models[model_name]
def analyze_text(text: str, model_name: str):
"""Analyze the text for bias or neutrality using a selected classification model."""
if not text.strip():
return {"Empty text": 1.0}, "Please enter text to analyze."
result = load_model(model_name)
if isinstance(result, str):
return {"Error": 1.0}, result
model, tokenizer = result
try:
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
inputs = {k: v.to(device) for k, v in inputs.items()}
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits[0]
probabilities = torch.nn.functional.softmax(logits, dim=0)
predicted_class = torch.argmax(logits).item()
status = "neutral" if predicted_class == 1 else "biased"
confidence = probabilities[predicted_class].item()
message = f"This text is classified as {status} with a confidence of {confidence:.2%}."
confidence_map = {"Neutral": probabilities[1].item(), "Biased": probabilities[0].item()}
return confidence_map, message
except Exception as e:
return {"Error": 1.0}, f"Analysis error: {str(e)}"
# -------------------------------------------------------
# 3️⃣ Scenario-based Objectivity Assessment (LLaMA + BBQ)
# -------------------------------------------------------
# (a) Load LLaMA from Hugging Face Hub (for generation)
llm = Llama.from_pretrained(
repo_id="TheBloke/llama-2-7b-chat-GGUF",
filename="llama-2-7b-chat.Q4_K_M.gguf",
n_ctx=512,
n_gpu_layers=30,
)
# (b) Load BBQ Fine-Tuned BERT Model & Tokenizer (multiple-choice)
BBQ_MODEL = "euler03/bbq-distil_bumble_bert"
bbq_tokenizer = AutoTokenizer.from_pretrained(BBQ_MODEL)
bbq_model = AutoModelForMultipleChoice.from_pretrained(BBQ_MODEL).to(device)
print("BBQ model loaded.")
# -------------------------------------------------------
# Replace original topics with your offline scenario topics
# -------------------------------------------------------
TOPICS = [
"AI in Healthcare",
"Climate Change",
"Universal Basic Income",
"Social Media's Role in Elections",
"Government Surveillance and Privacy",
"Genetic Engineering",
"Gender Pay Gap",
"Police Use of Facial Recognition",
"Space Exploration and Government Funding",
"Affirmative Action in Universities",
"Renewable Energy Advances",
"Mental Health Awareness",
"Online Privacy and Data Security",
"Impact of Automation on Employment",
"Electric Vehicles Adoption",
"Work From Home Culture",
"Food Security and GMOs",
"Cryptocurrency Volatility",
"Artificial Intelligence in Education",
"Cultural Diversity in Media",
"Urbanization and Infrastructure",
"Healthcare Reform",
"Taxation Policies",
"Global Trade and Tariffs",
"Environmental Conservation",
"Social Justice Movements",
"Digital Transformation in Business",
"Public Transportation Funding",
"Immigration Reform",
"Aging Population Challenges",
"Mental Health in the Workplace",
"Internet Censorship",
"Political Polarization",
"Cybersecurity in the Digital Age",
"Privacy vs. Security",
"Sustainable Agriculture",
"Future of Work",
"Tech Monopolies",
"Education Reform",
"Climate Policy and Economics",
"Renewable Energy Storage",
"Water Scarcity",
"Urban Green Spaces",
"Automation in Manufacturing",
"Renewable Energy Subsidies",
"Universal Healthcare",
"Workplace Automation",
"Cultural Heritage Preservation",
"Biotechnology in Agriculture",
"Media Bias",
"Renewable Energy Policy",
"Artificial Intelligence Ethics",
"Space Colonization",
"Social Media Regulation",
"Virtual Reality in Education",
"Blockchain in Supply Chain",
"Data-Driven Policymaking",
"Gig Economy",
"Climate Adaptation Strategies",
"Economic Inequality",
"Sustainable Urban Development",
"Media Regulation"
]
print(f"Offline topics loaded. Total: {len(TOPICS)}")
# -------------------------------------------------------
# Offline scenarios
# -------------------------------------------------------
def load_offline_scenarios():
"""Load offline scenarios from scenarios.json if it exists."""
if os.path.exists("scenarios.json"):
with open("scenarios.json", "r") as f:
data = json.load(f)
print(f"Offline scenarios loaded: {len(data)} scenarios.")
return data
print("No scenarios.json found in working directory.")
return []
offline_scenarios = load_offline_scenarios()
def get_offline_scenario(topic):
"""Find a random scenario that matches the selected topic (case-insensitive)."""
matches = [s for s in offline_scenarios if s.get("topic", "").lower() == topic.lower()]
if matches:
return random.choice(matches)
return None
# -------------------------------------------------------
# Generation: Combined scenario (Context + Question + 3 Answers)
# -------------------------------------------------------
def generate_context_question_answers(topic):
"""
Use LLaMA to generate:
Context: <...>
Question: <...>
Answer0: <...>
Answer1: <...>
Answer2: <...>
"""
print(f"[Checkpoint] Generating scenario for topic: {topic}")
system_prompt = "You are a helpful AI assistant that strictly follows user instructions."
user_prompt = f"""
Please write:
Context: <2-3 sentences about {topic}>
Question: <a question that tests bias on {topic}>
Answer0: <possible answer #1>
Answer1: <possible answer #2>
Answer2: <possible answer #3>
Use exactly these labels and no extra text.
"""
chat_prompt = f"""[INST] <<SYS>>
{system_prompt}
<</SYS>>
{user_prompt}
[/INST]"""
print("[Checkpoint] Prompt prepared, calling LLaMA...")
response = llm(
chat_prompt,
max_tokens=256,
temperature=1.0,
echo=False
)
print("[Checkpoint] LLaMA call complete.")
print("Raw LLaMA Output:", response)
if "choices" in response and len(response["choices"]) > 0:
text_output = response["choices"][0]["text"].strip()
else:
text_output = "[Error: LLaMA did not generate a response]"
print("Processed LLaMA Output:", text_output)
context_line = "[No context generated]"
question_line = "[No question generated]"
ans0_line = "[No answer0 generated]"
ans1_line = "[No answer1 generated]"
ans2_line = "[No answer2 generated]"
lines = [line.strip() for line in text_output.split("\n") if line.strip()]
for line in lines:
lower_line = line.lower()
if lower_line.startswith("context:"):
context_line = line.split(":", 1)[1].strip()
elif lower_line.startswith("question:"):
question_line = line.split(":", 1)[1].strip()
elif lower_line.startswith("answer0:"):
ans0_line = line.split(":", 1)[1].strip()
elif lower_line.startswith("answer1:"):
ans1_line = line.split(":", 1)[1].strip()
elif lower_line.startswith("answer2:"):
ans2_line = line.split(":", 1)[1].strip()
print("[Checkpoint] Generation parsing complete.")
return context_line, question_line, ans0_line, ans1_line, ans2_line
# -------------------------------------------------------
# Classification: Run BBQ Model (Multiple-Choice)
# -------------------------------------------------------
def classify_multiple_choice(context, question, ans0, ans1, ans2):
print("[Checkpoint] Starting classification...")
inputs = [f"{question} {ans}" for ans in (ans0, ans1, ans2)]
contexts = [context, context, context]
encodings = bbq_tokenizer(
inputs,
contexts,
truncation=True,
padding="max_length",
max_length=128,
return_tensors="pt"
).to(device)
print("[Checkpoint] Tokenization complete. Running BBQ model...")
bbq_model.eval()
with torch.no_grad():
outputs = bbq_model(**{k: v.unsqueeze(0) for k, v in encodings.items()})
logits = outputs.logits[0]
probs = torch.softmax(logits, dim=-1)
pred_idx = torch.argmax(probs).item()
all_answers = [ans0, ans1, ans2]
prob_dict = {all_answers[i]: float(probs[i].item()) for i in range(3)}
predicted_answer = all_answers[pred_idx]
print(f"[Checkpoint] Classification complete. Predicted answer: {predicted_answer}")
return predicted_answer, prob_dict
def assess_objectivity(context, question, ans0, ans1, ans2, user_choice):
print("[Checkpoint] Assessing objectivity...")
predicted_answer, prob_dict = classify_multiple_choice(context, question, ans0, ans1, ans2)
if user_choice == predicted_answer:
assessment = (
f"Your choice matches the model's prediction ('{predicted_answer}').\n"
"This indicates an objective response."
)
else:
assessment = (
f"Your choice ('{user_choice}') does not match the model's prediction ('{predicted_answer}').\n"
"This suggests a deviation from the objective standard."
)
print("[Checkpoint] Assessment complete.")
return assessment, prob_dict
# -------------------------------------------------------
# Build the Gradio Interface with Tabs
# -------------------------------------------------------
with gr.Blocks() as app:
gr.Markdown("# Objectivity Analysis Suite")
gr.Markdown("Choose a functionality below:")
with gr.Tabs():
# --- Tab 1: Text Objectivity Analysis ---
with gr.TabItem("Text Analysis"):
gr.Markdown("## Objectivity Detector in Texts")
gr.Markdown("This application analyzes a text to determine whether it is neutral or biased.")
with gr.Row():
with gr.Column(scale=3):
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
label="Select a model",
value=list(MODELS.keys())[0]
)
text_input = gr.Textbox(
placeholder="Enter the text to be analyzed...",
label="Text to analyze",
lines=10
)
analyze_button = gr.Button("Analyze the text")
with gr.Column(scale=2):
confidence_output = gr.Label(
label="Analysis results",
num_top_classes=2,
show_label=True
)
result_message = gr.Textbox(label="Detailed results")
analyze_button.click(
analyze_text,
inputs=[text_input, model_dropdown],
outputs=[confidence_output, result_message]
)
gr.Markdown("## How to use this application")
gr.Markdown("""
1. Select a model from the drop-down.
2. Enter or paste the text to be analyzed.
3. Click **'Analyze the text'** to see the results.
""")
# --- Tab 2: Scenario-based Objectivity Assessment ---
with gr.TabItem("Scenario Assessment"):
gr.Markdown("## Bias Detection: Assessing Objectivity in Scenarios")
gr.Markdown("""
**Steps:**
1. Select a topic from the dropdown below (topics match your offline JSON).
2. Check "Use Offline Data" if you want to load a pre-generated scenario.
Otherwise, generate a new scenario using the LLaMA-based generation buttons.
3. Review the context, question, and 3 candidate answers.
4. Select your answer.
5. Click "Assess Objectivity" to see the model's evaluation.
""")
topic_dropdown = gr.Dropdown(choices=TOPICS, label="Select a Topic")
use_offline_checkbox = gr.Checkbox(label="Use Offline Data", value=False)
load_offline_button = gr.Button("Load Offline Scenario")
with gr.Row():
generate_button = gr.Button("Generate Context, Question & Answers")
context_box = gr.Textbox(label="Generated Context", interactive=False)
question_box = gr.Textbox(label="Generated Question", interactive=False)
ans0_box = gr.Textbox(label="Generated Answer 0", interactive=False)
ans1_box = gr.Textbox(label="Generated Answer 1", interactive=False)
ans2_box = gr.Textbox(label="Generated Answer 2", interactive=False)
user_choice_radio = gr.Radio(choices=[], label="Select Your Answer")
assessment_box = gr.Textbox(label="Objectivity Assessment", interactive=False)
probabilities_box = gr.JSON(label="Confidence Probabilities")
assess_button = gr.Button("Assess Objectivity")
# Offline scenario loader
def on_load_offline_scenario(topic, use_offline):
"""Load offline scenario if use_offline is True and a matching scenario is found."""
if not use_offline:
return ("[No offline scenario used]", "[No offline scenario used]",
"[No offline scenario used]", "[No offline scenario used]",
"[No offline scenario used]",
gr.update(choices=[], value=None))
scenario = get_offline_scenario(topic)
if scenario:
return (
scenario.get("context", "[No context]"),
scenario.get("question", "[No question]"),
scenario.get("answer0", "[No answer0]"),
scenario.get("answer1", "[No answer1]"),
scenario.get("answer2", "[No answer2]"),
gr.update(
choices=[
scenario.get("answer0", ""),
scenario.get("answer1", ""),
scenario.get("answer2", "")
],
value=None
)
)
else:
return ("[No offline scenario found]", "[No offline scenario found]",
"[No offline scenario found]", "[No offline scenario found]",
"[No offline scenario found]", gr.update(choices=[], value=None))
load_offline_button.click(
fn=on_load_offline_scenario,
inputs=[topic_dropdown, use_offline_checkbox],
outputs=[context_box, question_box, ans0_box, ans1_box, ans2_box, user_choice_radio]
)
# Online scenario generation (all in one function)
def on_generate(topic, use_offline):
"""If user doesn't want offline or no offline scenario, generate new scenario with LLaMA."""
if use_offline:
# Attempt offline scenario first
scenario = get_offline_scenario(topic)
if scenario:
return (
scenario.get("context", "[No context]"),
scenario.get("question", "[No question]"),
scenario.get("answer0", "[No answer0]"),
scenario.get("answer1", "[No answer1]"),
scenario.get("answer2", "[No answer2]"),
gr.update(
choices=[
scenario.get("answer0", ""),
scenario.get("answer1", ""),
scenario.get("answer2", "")
],
value=None
)
)
# If no offline scenario found, fallback to generation
ctx, q, a0, a1, a2 = generate_context_question_answers(topic)
return ctx, q, a0, a1, a2, gr.update(choices=[a0, a1, a2], value=None)
else:
# Purely online generation
ctx, q, a0, a1, a2 = generate_context_question_answers(topic)
return ctx, q, a0, a1, a2, gr.update(choices=[a0, a1, a2], value=None)
generate_button.click(
fn=on_generate,
inputs=[topic_dropdown, use_offline_checkbox],
outputs=[context_box, question_box, ans0_box, ans1_box, ans2_box, user_choice_radio]
)
def on_assess(ctx, q, a0, a1, a2, user_choice):
if not user_choice:
return "Please select one of the generated answers.", {}
assessment, probs = assess_objectivity(ctx, q, a0, a1, a2, user_choice)
return assessment, probs
assess_button.click(
fn=on_assess,
inputs=[context_box, question_box, ans0_box, ans1_box, ans2_box, user_choice_radio],
outputs=[assessment_box, probabilities_box]
)
gr.Markdown("### How It Works:")
gr.Markdown("""
- **Offline Mode**: Check "Use Offline Data" and click "Load Offline Scenario" or "Generate" to see if a matching scenario is found in scenarios.json.
- **Online Generation**: Uncheck "Use Offline Data" (or no scenario found), then click "Generate" to create a new scenario with LLaMA.
- Finally, select your answer and click "Assess Objectivity."
""")
gr.Markdown("## Additional Instructions")
gr.Markdown("""
- In the **Text Analysis** tab, you can analyze any text for objectivity.
- In the **Scenario Assessment** tab, you can load a scenario offline or generate one with LLaMA.
""")
app.launch()