Spaces:
Runtime error
Runtime error
Eugene Siow
commited on
Commit
β’
a26597f
1
Parent(s):
05b61bd
Initial commit.
Browse files- .gitignore +4 -0
- README.md +3 -3
- app.py +73 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
venv/
|
3 |
+
tmp/
|
4 |
+
*.bmp
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Super Image
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
1 |
---
|
2 |
title: Super Image
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from random import randint
|
4 |
+
from pathlib import Path
|
5 |
+
from super_image import ImageLoader, EdsrModel, MsrnModel, MdsrModel, AwsrnModel, A2nModel, CarnModel, PanModel, \
|
6 |
+
HanModel, DrlnModel, RcanModel
|
7 |
+
|
8 |
+
title = "super-image"
|
9 |
+
description = "State of the Art Image Super-Resolution Models."
|
10 |
+
article = "<p style='text-align: center'><a href='https://github.com/eugenesiow/super-image'>Github Repo</a>" \
|
11 |
+
"| <a href='https://eugenesiow.github.io/super-image/'>Documentation</a> " \
|
12 |
+
"| <a href='https://github.com/eugenesiow/super-image#scale-x2'>Models</a></p>"
|
13 |
+
|
14 |
+
|
15 |
+
def inference(img, scale_str, model_name):
|
16 |
+
_id = randint(1, 1000)
|
17 |
+
output_dir = Path('./tmp/')
|
18 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
19 |
+
output_file = output_dir / ('output_image' + str(_id) + '.jpg')
|
20 |
+
scale = int(scale_str.replace('x', ''))
|
21 |
+
if model_name == 'EDSR':
|
22 |
+
model = EdsrModel.from_pretrained('eugenesiow/edsr', scale=scale)
|
23 |
+
elif model_name == 'MSRN':
|
24 |
+
model = MsrnModel.from_pretrained('eugenesiow/msrn', scale=scale)
|
25 |
+
elif model_name == 'MDSR':
|
26 |
+
model = MdsrModel.from_pretrained('eugenesiow/mdsr', scale=scale)
|
27 |
+
elif model_name == 'AWSRN-BAM':
|
28 |
+
model = AwsrnModel.from_pretrained('eugenesiow/awsrn-bam', scale=scale)
|
29 |
+
elif model_name == 'A2N':
|
30 |
+
model = A2nModel.from_pretrained('eugenesiow/a2n', scale=scale)
|
31 |
+
elif model_name == 'CARN':
|
32 |
+
model = CarnModel.from_pretrained('eugenesiow/carn', scale=scale)
|
33 |
+
elif model_name == 'PAN':
|
34 |
+
model = PanModel.from_pretrained('eugenesiow/pan', scale=scale)
|
35 |
+
elif model_name == 'HAN':
|
36 |
+
model = HanModel.from_pretrained('eugenesiow/han', scale=scale)
|
37 |
+
elif model_name == 'DRLN':
|
38 |
+
model = DrlnModel.from_pretrained('eugenesiow/drln', scale=scale)
|
39 |
+
elif model_name == 'RCAN':
|
40 |
+
model = RcanModel.from_pretrained('eugenesiow/rcan', scale=scale)
|
41 |
+
else:
|
42 |
+
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=scale)
|
43 |
+
inputs = ImageLoader.load_image(img)
|
44 |
+
preds = model(inputs)
|
45 |
+
output_file_str = str(output_file.resolve())
|
46 |
+
ImageLoader.save_image(preds, output_file_str)
|
47 |
+
return output_file_str
|
48 |
+
|
49 |
+
|
50 |
+
torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/baby_mini_d3_gaussian.bmp',
|
51 |
+
'baby.bmp')
|
52 |
+
torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/woman_mini_d3_gaussian.bmp',
|
53 |
+
'woman.bmp')
|
54 |
+
|
55 |
+
gr.Interface(
|
56 |
+
inference,
|
57 |
+
[
|
58 |
+
gr.inputs.Image(type="pil", label="Input"),
|
59 |
+
gr.inputs.Radio(["x2", "x3", "x4"], label='scale'),
|
60 |
+
gr.inputs.Dropdown(choices=['EDSR-base', 'EDSR', 'MSRN', 'MDSR', 'AWSRN-BAM', 'A2N', 'CARN', 'PAN', 'HAN',
|
61 |
+
'DRLN', 'RCAN'],
|
62 |
+
label='Model')
|
63 |
+
],
|
64 |
+
gr.outputs.Image(type="file", label="Output"),
|
65 |
+
title=title,
|
66 |
+
description=description,
|
67 |
+
article=article,
|
68 |
+
examples=[
|
69 |
+
['baby.bmp', 'x2', 'EDSR-base'],
|
70 |
+
['woman.bmp', 'x3', 'MSRN']
|
71 |
+
],
|
72 |
+
enable_queue=True
|
73 |
+
).launch(debug=True)
|