Merge pull request #6 from eubinecto/issue-5
Browse files- config.yaml +7 -5
- explore/explore_fetch_idioms.py +1 -1
- explore/explore_fetch_pie_annotate.py +14 -0
- explore/explore_list_index.py +13 -0
- explore/explore_upload_idioms_groupby.py +22 -0
- idiomify/fetchers.py +3 -4
- idiomify/preprocess.py +31 -0
- main_upload_idioms.py +6 -8
- main_upload_literal2idiomatic.py +4 -3
config.yaml
CHANGED
@@ -12,10 +12,12 @@ idiomifier:
|
|
12 |
|
13 |
# for building & uploading datasets or tokenizer
|
14 |
idioms:
|
15 |
-
ver: d-1-
|
16 |
-
description: the set of idioms in the traning set of literal2idiomatic_d-1-
|
17 |
literal2idiomatic:
|
18 |
-
ver: d-1-
|
19 |
-
description:
|
20 |
train_ratio: 0.8
|
21 |
-
seed: 104
|
|
|
|
|
|
12 |
|
13 |
# for building & uploading datasets or tokenizer
|
14 |
idioms:
|
15 |
+
ver: d-1-3
|
16 |
+
description: the set of idioms in the traning set of literal2idiomatic_d-1-3. Definitions of them are added as well.
|
17 |
literal2idiomatic:
|
18 |
+
ver: d-1-3
|
19 |
+
description: The idioms are annotated with <idiom> & </idiom>.
|
20 |
train_ratio: 0.8
|
21 |
+
seed: 104
|
22 |
+
boi_token: <idiom>
|
23 |
+
eoi_token: </idiom>
|
explore/explore_fetch_idioms.py
CHANGED
@@ -2,7 +2,7 @@ from idiomify.fetchers import fetch_idioms
|
|
2 |
|
3 |
|
4 |
def main():
|
5 |
-
print(fetch_idioms("d-1-
|
6 |
|
7 |
|
8 |
if __name__ == '__main__':
|
|
|
2 |
|
3 |
|
4 |
def main():
|
5 |
+
print(fetch_idioms("d-1-3"))
|
6 |
|
7 |
|
8 |
if __name__ == '__main__':
|
explore/explore_fetch_pie_annotate.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from idiomify.fetchers import fetch_pie
|
3 |
+
from preprocess import annotate
|
4 |
+
|
5 |
+
|
6 |
+
def main():
|
7 |
+
pie_df = fetch_pie()
|
8 |
+
pie_df = pie_df.pipe(annotate, boi_token="<idiom>", eoi_token="</idiom>")
|
9 |
+
for _, row in pie_df.iterrows():
|
10 |
+
print(row['Idiomatic_Sent'])
|
11 |
+
|
12 |
+
|
13 |
+
if __name__ == '__main__':
|
14 |
+
main()
|
explore/explore_list_index.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
def main():
|
4 |
+
labels = ["O", "O", "B", "O", "I", "I" "O", "I", "O", "O"]
|
5 |
+
boi_idx = labels.index("B")
|
6 |
+
eoi_idx = -1 * (list(reversed(labels)).index("I") + 1)
|
7 |
+
print(boi_idx, eoi_idx)
|
8 |
+
print(labels[boi_idx])
|
9 |
+
print(labels[eoi_idx])
|
10 |
+
|
11 |
+
|
12 |
+
if __name__ == '__main__':
|
13 |
+
main()
|
explore/explore_upload_idioms_groupby.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from idiomify.fetchers import fetch_literal2idiomatic, fetch_config
|
2 |
+
|
3 |
+
|
4 |
+
def main():
|
5 |
+
config = fetch_config()['literal2idiomatic']
|
6 |
+
train_df, _ = fetch_literal2idiomatic(config['ver'])
|
7 |
+
idioms_df = train_df[['Idiom', "Sense"]]
|
8 |
+
idioms_df = idioms_df.groupby('Idiom').agg({'Sense': lambda x: list(set(x))})
|
9 |
+
print(idioms_df.head(5))
|
10 |
+
for idx, row in idioms_df.iterrows():
|
11 |
+
print(row['Sense'])
|
12 |
+
|
13 |
+
"""
|
14 |
+
['to arrange something in a manner that either someone will gain a wrong disadvantage or a person would get an unfair advantage']
|
15 |
+
['Used in general to refer an experience or talent or ability or position, which would be useful or beneficial for a person, his life and his future.']
|
16 |
+
['to be very easy to see or notice']
|
17 |
+
[' to reach a logical conclusion']
|
18 |
+
['to start doing something over from the beginning']
|
19 |
+
"""
|
20 |
+
|
21 |
+
if __name__ == '__main__':
|
22 |
+
main()
|
idiomify/fetchers.py
CHANGED
@@ -17,7 +17,7 @@ def fetch_pie() -> pd.DataFrame:
|
|
17 |
|
18 |
|
19 |
# --- from wandb --- #
|
20 |
-
def fetch_idioms(ver: str, run: Run = None) ->
|
21 |
"""
|
22 |
why do you need this? -> you need this to have access to the idiom embeddings.
|
23 |
"""
|
@@ -28,9 +28,8 @@ def fetch_idioms(ver: str, run: Run = None) -> List[str]:
|
|
28 |
else:
|
29 |
artifact = wandb.Api().artifact(f"eubinecto/idiomify/idioms:{ver}", type="dataset")
|
30 |
artifact_dir = artifact.download(root=idioms_dir(ver))
|
31 |
-
|
32 |
-
|
33 |
-
return [line.strip() for line in fh]
|
34 |
|
35 |
|
36 |
def fetch_literal2idiomatic(ver: str, run: Run = None) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
|
17 |
|
18 |
|
19 |
# --- from wandb --- #
|
20 |
+
def fetch_idioms(ver: str, run: Run = None) -> pd.DataFrame:
|
21 |
"""
|
22 |
why do you need this? -> you need this to have access to the idiom embeddings.
|
23 |
"""
|
|
|
28 |
else:
|
29 |
artifact = wandb.Api().artifact(f"eubinecto/idiomify/idioms:{ver}", type="dataset")
|
30 |
artifact_dir = artifact.download(root=idioms_dir(ver))
|
31 |
+
tsv_path = path.join(artifact_dir, "all.tsv")
|
32 |
+
return pd.read_csv(tsv_path, sep="\t")
|
|
|
33 |
|
34 |
|
35 |
def fetch_literal2idiomatic(ver: str, run: Run = None) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
idiomify/preprocess.py
CHANGED
@@ -17,6 +17,36 @@ def cleanse(df: pd.DataFrame) -> pd.DataFrame:
|
|
17 |
return df
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def stratified_split(df: pd.DataFrame, ratio: float, seed: int) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
21 |
"""
|
22 |
stratified-split the given df into two df's.
|
@@ -29,3 +59,4 @@ def stratified_split(df: pd.DataFrame, ratio: float, seed: int) -> Tuple[pd.Data
|
|
29 |
test_size=other_size, random_state=seed,
|
30 |
shuffle=True)
|
31 |
return ratio_df, other_df
|
|
|
|
17 |
return df
|
18 |
|
19 |
|
20 |
+
def annotate(df: pd.DataFrame, boi_token: str, eoi_token: str) -> pd.DataFrame:
|
21 |
+
"""
|
22 |
+
e.g.
|
23 |
+
given a row like this:
|
24 |
+
Idiom keep an eye on
|
25 |
+
Sense keep a watch on something or someone closely
|
26 |
+
Idiomatic_Sent He had put on a lot of weight lately , so he started keeping an eye on what he ate .
|
27 |
+
Literal_Sent He had put on a lot of weight lately , so he started to watch what he ate .
|
28 |
+
Idiomatic_Label O O O O O O O O O O O O O B I I O O O O O
|
29 |
+
Literal_Label O O O O O O O O O O O O O B I O O O O
|
30 |
+
|
31 |
+
use Idiomatic_Label to replace Idiomatic_Sent with:
|
32 |
+
He had put on a lot of weight lately , so he started <idiom> keeping an eye on </idiom> what he ate .
|
33 |
+
"""
|
34 |
+
for idx, row in df.iterrows():
|
35 |
+
tokens = row['Idiomatic_Sent'].split(" ")
|
36 |
+
labels = row["Idiomatic_Label"].split(" ")
|
37 |
+
if "B" in labels:
|
38 |
+
boi_idx = labels.index("B")
|
39 |
+
if "I" in labels:
|
40 |
+
eoi_idx = -1 * (list(reversed(labels)).index("I") + 1)
|
41 |
+
tokens[boi_idx] = f"{boi_token} {tokens[boi_idx]}"
|
42 |
+
tokens[eoi_idx] = f"{tokens[eoi_idx]} {eoi_token}"
|
43 |
+
else:
|
44 |
+
tokens[boi_idx] = f"{boi_token} {tokens[boi_idx]} {eoi_token}"
|
45 |
+
row['Idiomatic_Sent'] = " ".join(tokens)
|
46 |
+
|
47 |
+
return df
|
48 |
+
|
49 |
+
|
50 |
def stratified_split(df: pd.DataFrame, ratio: float, seed: int) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
51 |
"""
|
52 |
stratified-split the given df into two df's.
|
|
|
59 |
test_size=other_size, random_state=seed,
|
60 |
shuffle=True)
|
61 |
return ratio_df, other_df
|
62 |
+
|
main_upload_idioms.py
CHANGED
@@ -11,22 +11,20 @@ from idiomify.paths import ROOT_DIR
|
|
11 |
def main():
|
12 |
config = fetch_config()['idioms']
|
13 |
train_df, _ = fetch_literal2idiomatic(config['ver'])
|
14 |
-
|
15 |
-
|
16 |
|
17 |
with wandb.init(entity="eubinecto", project="idiomify") as run:
|
18 |
# the paths to write datasets in
|
19 |
-
|
20 |
-
|
21 |
-
for idiom in idioms:
|
22 |
-
fh.write(idiom + "\n")
|
23 |
artifact = wandb.Artifact(name="idioms", type="dataset", description=config['description'],
|
24 |
metadata=config)
|
25 |
-
artifact.add_file(
|
26 |
# then, we just log them here.
|
27 |
run.log_artifact(artifact, aliases=["latest", config['ver']])
|
28 |
# don't forget to remove them
|
29 |
-
os.remove(
|
30 |
|
31 |
|
32 |
if __name__ == '__main__':
|
|
|
11 |
def main():
|
12 |
config = fetch_config()['idioms']
|
13 |
train_df, _ = fetch_literal2idiomatic(config['ver'])
|
14 |
+
idioms_df = train_df[['Idiom', "Sense"]]
|
15 |
+
idioms_df = idioms_df.groupby('Idiom').agg({'Sense': lambda x: list(set(x))})
|
16 |
|
17 |
with wandb.init(entity="eubinecto", project="idiomify") as run:
|
18 |
# the paths to write datasets in
|
19 |
+
tsv_path = ROOT_DIR / "all.tsv"
|
20 |
+
idioms_df.to_csv(tsv_path, sep="\t")
|
|
|
|
|
21 |
artifact = wandb.Artifact(name="idioms", type="dataset", description=config['description'],
|
22 |
metadata=config)
|
23 |
+
artifact.add_file(tsv_path)
|
24 |
# then, we just log them here.
|
25 |
run.log_artifact(artifact, aliases=["latest", config['ver']])
|
26 |
# don't forget to remove them
|
27 |
+
os.remove(tsv_path)
|
28 |
|
29 |
|
30 |
if __name__ == '__main__':
|
main_upload_literal2idiomatic.py
CHANGED
@@ -4,7 +4,7 @@ literal2idiomatic ver: d-1-2
|
|
4 |
import os
|
5 |
from idiomify.paths import ROOT_DIR
|
6 |
from idiomify.fetchers import fetch_pie, fetch_config
|
7 |
-
from idiomify.preprocess import upsample, cleanse, stratified_split
|
8 |
import wandb
|
9 |
|
10 |
|
@@ -15,10 +15,11 @@ def main():
|
|
15 |
config = fetch_config()['literal2idiomatic']
|
16 |
train_df, test_df = pie_df.pipe(cleanse)\
|
17 |
.pipe(upsample, seed=config['seed'])\
|
|
|
18 |
.pipe(stratified_split, ratio=config['train_ratio'], seed=config['seed'])
|
19 |
# why don't you just "select" the columns? yeah, stop using csv library. just select them.
|
20 |
-
train_df = train_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]]
|
21 |
-
test_df = test_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]]
|
22 |
dfs = (train_df, test_df)
|
23 |
with wandb.init(entity="eubinecto", project="idiomify") as run:
|
24 |
# the paths to write datasets in
|
|
|
4 |
import os
|
5 |
from idiomify.paths import ROOT_DIR
|
6 |
from idiomify.fetchers import fetch_pie, fetch_config
|
7 |
+
from idiomify.preprocess import upsample, cleanse, stratified_split, annotate
|
8 |
import wandb
|
9 |
|
10 |
|
|
|
15 |
config = fetch_config()['literal2idiomatic']
|
16 |
train_df, test_df = pie_df.pipe(cleanse)\
|
17 |
.pipe(upsample, seed=config['seed'])\
|
18 |
+
.pipe(annotate, boi_token=config['boi_token'], eoi_token=config['eoi_token'])\
|
19 |
.pipe(stratified_split, ratio=config['train_ratio'], seed=config['seed'])
|
20 |
# why don't you just "select" the columns? yeah, stop using csv library. just select them.
|
21 |
+
train_df = train_df[["Idiom", "Sense", "Literal_Sent", "Idiomatic_Sent"]]
|
22 |
+
test_df = test_df[["Idiom", "Sense", "Literal_Sent", "Idiomatic_Sent"]]
|
23 |
dfs = (train_df, test_df)
|
24 |
with wandb.init(entity="eubinecto", project="idiomify") as run:
|
25 |
# the paths to write datasets in
|