idiomify / config.yaml
eubinecto's picture
[#2] deploying the model with `main_deploy.py`.
253de62
raw
history blame
623 Bytes
idiomifier:
ver: m-1-2
desc: just overfitting the model, but on the entire PIE dataset.
bart: facebook/bart-base
lr: 0.0001
literal2idiomatic_ver: d-1-2
idioms_ver: d-1-2
max_epochs: 2
batch_size: 40
shuffle: true
seed: 104
# for building & uploading datasets or tokenizer
idioms:
ver: d-1-2
description: the set of idioms in the traning set of literal2idiomatic_d-1-2.
literal2idiomatic:
ver: d-1-2
description: PIE data split into train & test set (80 / 20 split). There is no validation set because I don't intend to do any hyperparameter tuning on this thing.
train_ratio: 0.8
seed: 104