DawnC commited on
Commit
f3a7e83
·
verified ·
1 Parent(s): 565c518

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -36
app.py CHANGED
@@ -251,33 +251,45 @@ def get_akc_breeds_link():
251
  # iface.launch()
252
 
253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  def detect_dogs(image):
255
- # 使用 YOLO 模型進行偵測
256
  results = model_yolo(image)
257
-
258
- # 打印 YOLO 偵測結果
259
- print(f"YOLO detection results: {results}")
260
-
261
  dogs = []
262
  for result in results:
263
- # 打印每個結果
264
- print(f"Result: {result}")
265
  for box in result.boxes:
266
- # 打印邊界框的類別和座標
267
- print(f"Detected class: {box.cls}, Confidence: {box.conf}, Box coordinates: {box.xyxy}")
268
-
269
- if box.cls == 16: # COCO 資料集中的狗類別是 16
270
  xyxy = box.xyxy[0].tolist()
271
  confidence = box.conf.item()
272
-
273
- # 確認圖片裁切過程正確
274
- print(f"Cropping image at coordinates: {xyxy}")
275
-
276
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
277
  dogs.append((cropped_image, confidence, xyxy))
278
-
279
- # 最後打印偵測到的狗的數量
280
- print(f"Number of dogs detected: {len(dogs)}")
281
  return dogs
282
 
283
 
@@ -301,6 +313,17 @@ def predict(image):
301
  if isinstance(image, np.ndarray):
302
  image = Image.fromarray(image)
303
 
 
 
 
 
 
 
 
 
 
 
 
304
  dogs = detect_dogs(image)
305
  if len(dogs) == 0:
306
  return "No dogs detected or the image is unclear. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
@@ -311,7 +334,7 @@ def predict(image):
311
  draw = ImageDraw.Draw(annotated_image)
312
 
313
  for i, (cropped_image, _, box) in enumerate(dogs):
314
- top1_prob, topk_breeds, topk_probs_percent = predict_breed(cropped_image)
315
 
316
  draw.rectangle(box, outline="red", width=3)
317
  draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
@@ -319,7 +342,7 @@ def predict(image):
319
  if top1_prob >= 0.5:
320
  breed = topk_breeds[0]
321
  description = get_dog_description(breed)
322
- explanations.append(f"Dog {i+1}: **{breed}**\n{format_description(description, breed)}")
323
  elif 0.2 <= top1_prob < 0.5:
324
  explanation = (
325
  f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
@@ -338,22 +361,6 @@ def predict(image):
338
  except Exception as e:
339
  return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
340
 
341
- def format_description(description, breed):
342
- if isinstance(description, dict):
343
- formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
344
- else:
345
- formatted_description = description
346
-
347
- akc_link = get_akc_breeds_link()
348
- formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
349
-
350
- disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
351
- "You may need to search for the specific breed on that page. "
352
- "I am not responsible for the content on external sites. "
353
- "Please refer to the AKC's terms of use and privacy policy.*")
354
- formatted_description += disclaimer
355
-
356
- return formatted_description
357
 
358
  def show_details(breed):
359
  breed_name = breed.split("More about ")[-1]
 
251
  # iface.launch()
252
 
253
 
254
+ def format_description(description, breed):
255
+ if isinstance(description, dict):
256
+ formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
257
+ else:
258
+ formatted_description = description
259
+
260
+ akc_link = get_akc_breeds_link()
261
+ formatted_description += f"\n\n**Want to learn more about dog breeds?**\n[Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
262
+
263
+ disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
264
+ "You may need to search for the specific breed on that page. "
265
+ "I am not responsible for the content on external sites. "
266
+ "Please refer to the AKC's terms of use and privacy policy.*")
267
+ formatted_description += disclaimer
268
+
269
+ return formatted_description
270
+
271
+ def predict_single_dog(image):
272
+ image_tensor = preprocess_image(image)
273
+ with torch.no_grad():
274
+ output = model(image_tensor)
275
+ logits = output[0] if isinstance(output, tuple) else output
276
+ probabilities = F.softmax(logits, dim=1)
277
+ topk_probs, topk_indices = torch.topk(probabilities, k=3)
278
+ top1_prob = topk_probs[0][0].item()
279
+ topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
280
+ topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
281
+ return top1_prob, topk_breeds, topk_probs_percent
282
+
283
  def detect_dogs(image):
 
284
  results = model_yolo(image)
 
 
 
 
285
  dogs = []
286
  for result in results:
 
 
287
  for box in result.boxes:
288
+ if box.cls == 16: # COCO dataset class for dog is 16
 
 
 
289
  xyxy = box.xyxy[0].tolist()
290
  confidence = box.conf.item()
 
 
 
 
291
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
292
  dogs.append((cropped_image, confidence, xyxy))
 
 
 
293
  return dogs
294
 
295
 
 
313
  if isinstance(image, np.ndarray):
314
  image = Image.fromarray(image)
315
 
316
+ # First, try single dog prediction
317
+ top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
318
+
319
+ if top1_prob >= 0.5:
320
+ # If confident enough, use single dog prediction
321
+ breed = topk_breeds[0]
322
+ description = get_dog_description(breed)
323
+ formatted_description = format_description(description, breed)
324
+ return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
325
+
326
+ # If not confident, use YOLO for multiple dog detection
327
  dogs = detect_dogs(image)
328
  if len(dogs) == 0:
329
  return "No dogs detected or the image is unclear. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
334
  draw = ImageDraw.Draw(annotated_image)
335
 
336
  for i, (cropped_image, _, box) in enumerate(dogs):
337
+ top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
338
 
339
  draw.rectangle(box, outline="red", width=3)
340
  draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
 
342
  if top1_prob >= 0.5:
343
  breed = topk_breeds[0]
344
  description = get_dog_description(breed)
345
+ explanations.append(f"Dog {i+1}:\n**Breed**: {breed}\n{format_description(description, breed)}")
346
  elif 0.2 <= top1_prob < 0.5:
347
  explanation = (
348
  f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
 
361
  except Exception as e:
362
  return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364
 
365
  def show_details(breed):
366
  breed_name = breed.split("More about ")[-1]