DawnC commited on
Commit
ee0325d
·
verified ·
1 Parent(s): 08cadf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -15
app.py CHANGED
@@ -185,10 +185,63 @@ async def predict_single_dog(image):
185
  return probabilities[0], breeds[:3], relative_probs
186
 
187
 
188
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
  dogs = []
191
  boxes = []
 
 
192
  for box in results.boxes:
193
  if box.cls == 16: # COCO dataset class for dog is 16
194
  xyxy = box.xyxy[0].tolist()
@@ -198,31 +251,69 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
198
  if not boxes:
199
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
200
  else:
201
- nms_boxes = non_max_suppression(boxes, iou_threshold)
 
202
 
 
203
  for box, confidence in nms_boxes:
204
  x1, y1, x2, y2 = box
 
205
  w, h = x2 - x1, y2 - y1
206
- x1 = max(0, x1 - w * 0.05)
207
- y1 = max(0, y1 - h * 0.05)
208
- x2 = min(image.width, x2 + w * 0.05)
209
- y2 = min(image.height, y2 + h * 0.05)
210
  cropped_image = image.crop((x1, y1, x2, y2))
211
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
212
 
213
  return dogs
214
 
215
- def non_max_suppression(boxes, iou_threshold):
216
- keep = []
217
- boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
218
- while boxes:
219
- current = boxes.pop(0)
220
- keep.append(current)
221
- boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
222
- return keep
223
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
 
225
  def calculate_iou(box1, box2):
 
 
 
226
  x1 = max(box1[0], box2[0])
227
  y1 = max(box1[1], box2[1])
228
  x2 = min(box1[2], box2[2])
 
185
  return probabilities[0], breeds[:3], relative_probs
186
 
187
 
188
+ # async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
189
+ # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
+ # dogs = []
191
+ # boxes = []
192
+ # for box in results.boxes:
193
+ # if box.cls == 16: # COCO dataset class for dog is 16
194
+ # xyxy = box.xyxy[0].tolist()
195
+ # confidence = box.conf.item()
196
+ # boxes.append((xyxy, confidence))
197
+
198
+ # if not boxes:
199
+ # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
200
+ # else:
201
+ # nms_boxes = non_max_suppression(boxes, iou_threshold)
202
+
203
+ # for box, confidence in nms_boxes:
204
+ # x1, y1, x2, y2 = box
205
+ # w, h = x2 - x1, y2 - y1
206
+ # x1 = max(0, x1 - w * 0.05)
207
+ # y1 = max(0, y1 - h * 0.05)
208
+ # x2 = min(image.width, x2 + w * 0.05)
209
+ # y2 = min(image.height, y2 + h * 0.05)
210
+ # cropped_image = image.crop((x1, y1, x2, y2))
211
+ # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
212
+
213
+ # return dogs
214
+
215
+ # def non_max_suppression(boxes, iou_threshold):
216
+ # keep = []
217
+ # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
218
+ # while boxes:
219
+ # current = boxes.pop(0)
220
+ # keep.append(current)
221
+ # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
222
+ # return keep
223
+
224
+
225
+ # def calculate_iou(box1, box2):
226
+ # x1 = max(box1[0], box2[0])
227
+ # y1 = max(box1[1], box2[1])
228
+ # x2 = min(box1[2], box2[2])
229
+ # y2 = min(box1[3], box2[3])
230
+
231
+ # intersection = max(0, x2 - x1) * max(0, y2 - y1)
232
+ # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
233
+ # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
234
+
235
+ # iou = intersection / float(area1 + area2 - intersection)
236
+ # return iou
237
+
238
+
239
+ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, sigma=0.5):
240
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
241
  dogs = []
242
  boxes = []
243
+
244
+ # 收集所有狗的檢測結果
245
  for box in results.boxes:
246
  if box.cls == 16: # COCO dataset class for dog is 16
247
  xyxy = box.xyxy[0].tolist()
 
251
  if not boxes:
252
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
253
  else:
254
+ # 使用SoftNMS替代原有的NMS
255
+ nms_boxes = soft_nms(boxes, iou_threshold, sigma)
256
 
257
+ # 處理保留的框
258
  for box, confidence in nms_boxes:
259
  x1, y1, x2, y2 = box
260
+ # 擴大框的範圍以包含更多上下文
261
  w, h = x2 - x1, y2 - y1
262
+ x1 = max(0, x1 - w * 0.1) # 增加到10%的margin
263
+ y1 = max(0, y1 - h * 0.1)
264
+ x2 = min(image.width, x2 + w * 0.1)
265
+ y2 = min(image.height, y2 + h * 0.1)
266
  cropped_image = image.crop((x1, y1, x2, y2))
267
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
268
 
269
  return dogs
270
 
271
+ def soft_nms(boxes, iou_threshold=0.55, sigma=0.5, score_threshold=0.25):
272
+ """
273
+ SoftNMS with Gaussian decay
274
+ """
275
+ if not boxes:
276
+ return []
277
+
278
+ # 轉換格式以便處理
279
+ box_coords = np.array([box[0] for box in boxes])
280
+ scores = np.array([box[1] for box in boxes])
281
+
282
+ # 按照confidence排序
283
+ indices = np.argsort(scores)[::-1]
284
+ box_coords = box_coords[indices]
285
+ scores = scores[indices]
286
+
287
+ keep_boxes = []
288
+ keep_scores = []
289
+
290
+ while len(scores) > 0:
291
+ # 保留最高分數的框
292
+ keep_boxes.append(box_coords[0].tolist())
293
+ keep_scores.append(scores[0])
294
+
295
+ if len(scores) == 1:
296
+ break
297
+
298
+ # 計算當前最高分框與其他所有框的IoU
299
+ ious = np.array([calculate_iou(box_coords[0], box) for box in box_coords[1:]])
300
+
301
+ # 使用高斯衰減更新分數
302
+ scores[1:] = scores[1:] * np.exp(-(ious * ious) / sigma)
303
+
304
+ # 移除最高分的框並過濾低於閾值的框
305
+ box_coords = box_coords[1:]
306
+ scores = scores[1:]
307
+ mask = scores > score_threshold
308
+ box_coords = box_coords[mask]
309
+ scores = scores[mask]
310
+
311
+ return list(zip(keep_boxes, keep_scores))
312
 
313
  def calculate_iou(box1, box2):
314
+ """
315
+ IoU 計算
316
+ """
317
  x1 = max(box1[0], box2[0])
318
  y1 = max(box1[1], box2[1])
319
  x2 = min(box1[2], box2[2])