DawnC commited on
Commit
d1effc1
·
verified ·
1 Parent(s): a0c885f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -53
app.py CHANGED
@@ -8,7 +8,6 @@ from torchvision.ops import nms, box_iou
8
  import torch.nn.functional as F
9
  from torchvision import transforms
10
  from PIL import Image, ImageDraw, ImageFont, ImageFilter
11
- from sklearn.cluster import KMeans
12
  from data_manager import get_dog_description
13
  from urllib.parse import quote
14
  from ultralytics import YOLO
@@ -168,39 +167,10 @@ async def predict_single_dog(image):
168
  return top1_prob, topk_breeds, topk_probs_percent
169
 
170
 
171
- # async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
172
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
173
- # dogs = []
174
- # boxes = []
175
- # for box in results.boxes:
176
- # if box.cls == 16: # COCO dataset class for dog is 16
177
- # xyxy = box.xyxy[0].tolist()
178
- # confidence = box.conf.item()
179
- # boxes.append((xyxy, confidence))
180
-
181
- # if not boxes:
182
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
183
- # else:
184
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
185
-
186
- # for box, confidence in nms_boxes:
187
- # x1, y1, x2, y2 = box
188
- # w, h = x2 - x1, y2 - y1
189
- # x1 = max(0, x1 - w * 0.05)
190
- # y1 = max(0, y1 - h * 0.05)
191
- # x2 = min(image.width, x2 + w * 0.05)
192
- # y2 = min(image.height, y2 + h * 0.05)
193
- # cropped_image = image.crop((x1, y1, x2, y2))
194
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
195
-
196
- # return dogs
197
-
198
-
199
- async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
200
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
201
  dogs = []
202
  boxes = []
203
-
204
  for box in results.boxes:
205
  if box.cls == 16: # COCO dataset class for dog is 16
206
  xyxy = box.xyxy[0].tolist()
@@ -213,37 +183,66 @@ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
213
  nms_boxes = non_max_suppression(boxes, iou_threshold)
214
 
215
  for box, confidence in nms_boxes:
216
- x1, y1, x2, y2 = [int(coord) for coord in box]
 
 
 
 
 
217
  cropped_image = image.crop((x1, y1, x2, y2))
218
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
219
 
220
- # 應用過濾器來移除可能的錯誤檢測
221
- dogs = filter_detections(dogs, (image.width, image.height))
222
-
223
  return dogs
224
 
225
- def filter_detections(dogs, image_size):
226
- filtered_dogs = []
227
- image_area = image_size[0] * image_size[1]
228
- num_dogs = len(dogs)
229
 
230
- # 根據檢測到的狗的數量動態調整閾值
231
- if num_dogs > 5:
232
- min_ratio, max_ratio = 0.003, 0.5
233
- elif num_dogs > 2:
234
- min_ratio, max_ratio = 0.005, 0.6
235
- else:
236
- min_ratio, max_ratio = 0.01, 0.7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
 
238
- for dog in dogs:
239
- _, confidence, box = dog
240
- dog_area = (box[2] - box[0]) * (box[3] - box[1])
241
- area_ratio = dog_area / image_area
242
 
243
- if min_ratio < area_ratio < max_ratio:
244
- filtered_dogs.append(dog)
245
 
246
- return filtered_dogs
247
 
248
 
249
  def non_max_suppression(boxes, iou_threshold):
 
8
  import torch.nn.functional as F
9
  from torchvision import transforms
10
  from PIL import Image, ImageDraw, ImageFont, ImageFilter
 
11
  from data_manager import get_dog_description
12
  from urllib.parse import quote
13
  from ultralytics import YOLO
 
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
+ async def detect_multiple_dogs(image, conf_threshold=0.4, iou_threshold=0.55):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
  dogs = []
173
  boxes = []
 
174
  for box in results.boxes:
175
  if box.cls == 16: # COCO dataset class for dog is 16
176
  xyxy = box.xyxy[0].tolist()
 
183
  nms_boxes = non_max_suppression(boxes, iou_threshold)
184
 
185
  for box, confidence in nms_boxes:
186
+ x1, y1, x2, y2 = box
187
+ w, h = x2 - x1, y2 - y1
188
+ x1 = max(0, x1 - w * 0.05)
189
+ y1 = max(0, y1 - h * 0.05)
190
+ x2 = min(image.width, x2 + w * 0.05)
191
+ y2 = min(image.height, y2 + h * 0.05)
192
  cropped_image = image.crop((x1, y1, x2, y2))
193
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
 
 
 
 
195
  return dogs
196
 
 
 
 
 
197
 
198
+ # async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
199
+ # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
200
+ # dogs = []
201
+ # boxes = []
202
+
203
+ # for box in results.boxes:
204
+ # if box.cls == 16: # COCO dataset class for dog is 16
205
+ # xyxy = box.xyxy[0].tolist()
206
+ # confidence = box.conf.item()
207
+ # boxes.append((xyxy, confidence))
208
+
209
+ # if not boxes:
210
+ # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
211
+ # else:
212
+ # nms_boxes = non_max_suppression(boxes, iou_threshold)
213
+
214
+ # for box, confidence in nms_boxes:
215
+ # x1, y1, x2, y2 = [int(coord) for coord in box]
216
+ # cropped_image = image.crop((x1, y1, x2, y2))
217
+ # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
218
+
219
+ # # 應用過濾器來移除可能的錯誤檢測
220
+ # dogs = filter_detections(dogs, (image.width, image.height))
221
+
222
+ # return dogs
223
+
224
+ # def filter_detections(dogs, image_size):
225
+ # filtered_dogs = []
226
+ # image_area = image_size[0] * image_size[1]
227
+ # num_dogs = len(dogs)
228
+
229
+ # # 根據檢測到的狗的數量動態調整閾值
230
+ # if num_dogs > 5:
231
+ # min_ratio, max_ratio = 0.003, 0.5
232
+ # elif num_dogs > 2:
233
+ # min_ratio, max_ratio = 0.005, 0.6
234
+ # else:
235
+ # min_ratio, max_ratio = 0.01, 0.7
236
 
237
+ # for dog in dogs:
238
+ # _, confidence, box = dog
239
+ # dog_area = (box[2] - box[0]) * (box[3] - box[1])
240
+ # area_ratio = dog_area / image_area
241
 
242
+ # if min_ratio < area_ratio < max_ratio:
243
+ # filtered_dogs.append(dog)
244
 
245
+ # return filtered_dogs
246
 
247
 
248
  def non_max_suppression(boxes, iou_threshold):