Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- breed_recommendation.py +292 -0
- description_search_ui.py +163 -0
- smart_breed_matcher.py +382 -0
breed_recommendation.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import sqlite3
|
3 |
+
import gradio as gr
|
4 |
+
from dog_database import get_dog_description, dog_data
|
5 |
+
from breed_health_info import breed_health_info
|
6 |
+
from breed_noise_info import breed_noise_info
|
7 |
+
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
|
8 |
+
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
9 |
+
from smart_breed_matcher import SmartBreedMatcher
|
10 |
+
from description_search_ui import create_description_search_tab
|
11 |
+
|
12 |
+
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
|
13 |
+
|
14 |
+
with gr.TabItem("Breed Recommendation"):
|
15 |
+
with gr.Tabs():
|
16 |
+
with gr.Tab("Find by Criteria"):
|
17 |
+
gr.HTML("""
|
18 |
+
<div style='
|
19 |
+
text-align: center;
|
20 |
+
padding: 20px 0;
|
21 |
+
margin: 15px 0;
|
22 |
+
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
23 |
+
border-radius: 10px;
|
24 |
+
'>
|
25 |
+
<p style='
|
26 |
+
font-size: 1.2em;
|
27 |
+
margin: 0;
|
28 |
+
padding: 0 20px;
|
29 |
+
line-height: 1.5;
|
30 |
+
background: linear-gradient(90deg, #4299e1, #48bb78);
|
31 |
+
-webkit-background-clip: text;
|
32 |
+
-webkit-text-fill-color: transparent;
|
33 |
+
font-weight: 600;
|
34 |
+
'>
|
35 |
+
Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
|
36 |
+
</p>
|
37 |
+
</div>
|
38 |
+
""")
|
39 |
+
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
living_space = gr.Radio(
|
43 |
+
choices=["apartment", "house_small", "house_large"],
|
44 |
+
label="What type of living space do you have?",
|
45 |
+
info="Choose your current living situation",
|
46 |
+
value="apartment"
|
47 |
+
)
|
48 |
+
|
49 |
+
exercise_time = gr.Slider(
|
50 |
+
minimum=0,
|
51 |
+
maximum=180,
|
52 |
+
value=60,
|
53 |
+
label="Daily exercise time (minutes)",
|
54 |
+
info="Consider walks, play time, and training"
|
55 |
+
)
|
56 |
+
|
57 |
+
grooming_commitment = gr.Radio(
|
58 |
+
choices=["low", "medium", "high"],
|
59 |
+
label="Grooming commitment level",
|
60 |
+
info="Low: monthly, Medium: weekly, High: daily",
|
61 |
+
value="medium"
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Column():
|
65 |
+
experience_level = gr.Radio(
|
66 |
+
choices=["beginner", "intermediate", "advanced"],
|
67 |
+
label="Dog ownership experience",
|
68 |
+
info="Be honest - this helps find the right match",
|
69 |
+
value="beginner"
|
70 |
+
)
|
71 |
+
|
72 |
+
has_children = gr.Checkbox(
|
73 |
+
label="Have children at home",
|
74 |
+
info="Helps recommend child-friendly breeds"
|
75 |
+
)
|
76 |
+
|
77 |
+
noise_tolerance = gr.Radio(
|
78 |
+
choices=["low", "medium", "high"],
|
79 |
+
label="Noise tolerance level",
|
80 |
+
info="Some breeds are more vocal than others",
|
81 |
+
value="medium"
|
82 |
+
)
|
83 |
+
|
84 |
+
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
|
85 |
+
recommendation_output = gr.HTML(label="Breed Recommendations")
|
86 |
+
|
87 |
+
with gr.Tab("Find by Description"):
|
88 |
+
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
|
89 |
+
|
90 |
+
|
91 |
+
def on_find_match_click(*args):
|
92 |
+
try:
|
93 |
+
user_prefs = UserPreferences(
|
94 |
+
living_space=args[0],
|
95 |
+
exercise_time=args[1],
|
96 |
+
grooming_commitment=args[2],
|
97 |
+
experience_level=args[3],
|
98 |
+
has_children=args[4],
|
99 |
+
noise_tolerance=args[5],
|
100 |
+
space_for_play=True if args[0] != "apartment" else False,
|
101 |
+
other_pets=False,
|
102 |
+
climate="moderate",
|
103 |
+
health_sensitivity="medium", # 新增: 默認中等敏感度
|
104 |
+
barking_acceptance=args[5] # 使用 noise_tolerance 作為 barking_acceptance
|
105 |
+
)
|
106 |
+
|
107 |
+
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
108 |
+
|
109 |
+
history_results = [{
|
110 |
+
'breed': rec['breed'],
|
111 |
+
'rank': rec['rank'],
|
112 |
+
'overall_score': rec['final_score'],
|
113 |
+
'base_score': rec['base_score'],
|
114 |
+
'bonus_score': rec['bonus_score'],
|
115 |
+
'scores': rec['scores']
|
116 |
+
} for rec in recommendations]
|
117 |
+
|
118 |
+
# 保存到歷史記錄,也需要更新保存的偏好設定
|
119 |
+
history_component.save_search(
|
120 |
+
user_preferences={
|
121 |
+
'living_space': args[0],
|
122 |
+
'exercise_time': args[1],
|
123 |
+
'grooming_commitment': args[2],
|
124 |
+
'experience_level': args[3],
|
125 |
+
'has_children': args[4],
|
126 |
+
'noise_tolerance': args[5],
|
127 |
+
'health_sensitivity': "medium",
|
128 |
+
'barking_acceptance': args[5]
|
129 |
+
},
|
130 |
+
results=history_results
|
131 |
+
)
|
132 |
+
|
133 |
+
return format_recommendation_html(recommendations)
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error in find match: {str(e)}")
|
137 |
+
import traceback
|
138 |
+
print(traceback.format_exc())
|
139 |
+
return "Error getting recommendations"
|
140 |
+
|
141 |
+
def on_description_search(description: str):
|
142 |
+
try:
|
143 |
+
matcher = SmartBreedMatcher(dog_data)
|
144 |
+
breed_recommendations = matcher.match_user_preference(description, top_n=10)
|
145 |
+
|
146 |
+
print("Creating user preferences...")
|
147 |
+
user_prefs = UserPreferences(
|
148 |
+
living_space="apartment" if "apartment" in description.lower() else "house_small",
|
149 |
+
exercise_time=60,
|
150 |
+
grooming_commitment="medium",
|
151 |
+
experience_level="intermediate",
|
152 |
+
has_children="children" in description.lower() or "kids" in description.lower(),
|
153 |
+
noise_tolerance="medium",
|
154 |
+
space_for_play=True if "yard" in description.lower() or "garden" in description.lower() else False,
|
155 |
+
other_pets=False,
|
156 |
+
climate="moderate",
|
157 |
+
health_sensitivity="medium",
|
158 |
+
barking_acceptance=None
|
159 |
+
)
|
160 |
+
|
161 |
+
final_recommendations = []
|
162 |
+
|
163 |
+
for smart_rec in breed_recommendations:
|
164 |
+
breed_name = smart_rec['breed']
|
165 |
+
breed_info = get_dog_description(breed_name)
|
166 |
+
if not isinstance(breed_info, dict):
|
167 |
+
continue
|
168 |
+
|
169 |
+
# 計算基礎相容性分數
|
170 |
+
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
|
171 |
+
|
172 |
+
bonus_reasons = []
|
173 |
+
bonus_score = 0
|
174 |
+
is_preferred = smart_rec.get('is_preferred', False)
|
175 |
+
similarity = smart_rec.get('similarity', 0)
|
176 |
+
|
177 |
+
# 用戶直接提到的品種
|
178 |
+
if is_preferred:
|
179 |
+
bonus_score = 0.15 # 15% bonus
|
180 |
+
bonus_reasons.append("Directly mentioned breed (+15%)")
|
181 |
+
# 高相似度品種
|
182 |
+
elif similarity > 0.8:
|
183 |
+
bonus_score = 0.10 # 10% bonus
|
184 |
+
bonus_reasons.append("Very similar to preferred breed (+10%)")
|
185 |
+
# 中等相似度品種
|
186 |
+
elif similarity > 0.6:
|
187 |
+
bonus_score = 0.05 # 5% bonus
|
188 |
+
bonus_reasons.append("Similar to preferred breed (+5%)")
|
189 |
+
|
190 |
+
# 基於品種特性的額外加分
|
191 |
+
temperament = breed_info.get('Temperament', '').lower()
|
192 |
+
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
|
193 |
+
bonus_score += 0.02 # 2% bonus
|
194 |
+
bonus_reasons.append("Positive temperament traits (+2%)")
|
195 |
+
|
196 |
+
if breed_info.get('Good with Children') == 'Yes' and user_prefs.has_children:
|
197 |
+
bonus_score += 0.03 # 3% bonus
|
198 |
+
bonus_reasons.append("Excellent with children (+3%)")
|
199 |
+
|
200 |
+
# 基礎分數和最終分數計算
|
201 |
+
base_score = compatibility_scores.get('overall', 0.7)
|
202 |
+
final_score = min(0.95, base_score + bonus_score) # 確保不超過95%
|
203 |
+
|
204 |
+
final_recommendations.append({
|
205 |
+
'rank': 0,
|
206 |
+
'breed': breed_name,
|
207 |
+
'base_score': round(base_score, 4),
|
208 |
+
'bonus_score': round(bonus_score, 4),
|
209 |
+
'final_score': round(final_score, 4),
|
210 |
+
'scores': compatibility_scores,
|
211 |
+
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
|
212 |
+
'info': breed_info,
|
213 |
+
'noise_info': breed_noise_info.get(breed_name, {}),
|
214 |
+
'health_info': breed_health_info.get(breed_name, {})
|
215 |
+
})
|
216 |
+
|
217 |
+
# 根據最終分數排序
|
218 |
+
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
|
219 |
+
|
220 |
+
# 更新排名
|
221 |
+
for i, rec in enumerate(final_recommendations, 1):
|
222 |
+
rec['rank'] = i
|
223 |
+
|
224 |
+
# 新增:保存到歷史記錄
|
225 |
+
history_results = [{
|
226 |
+
'breed': rec['breed'],
|
227 |
+
'rank': rec['rank'],
|
228 |
+
'final_score': rec['final_score']
|
229 |
+
} for rec in final_recommendations[:10]] # 只保存前10名
|
230 |
+
|
231 |
+
history_component.save_search(
|
232 |
+
user_preferences=None, # description搜尋不需要preferences
|
233 |
+
results=history_results,
|
234 |
+
search_type="description",
|
235 |
+
description=description # 用戶輸入的描述文字
|
236 |
+
)
|
237 |
+
|
238 |
+
# 驗證排序
|
239 |
+
print("\nFinal Rankings:")
|
240 |
+
for rec in final_recommendations:
|
241 |
+
print(f"#{rec['rank']} {rec['breed']}")
|
242 |
+
print(f"Base Score: {rec['base_score']:.4f}")
|
243 |
+
print(f"Bonus Score: {rec['bonus_score']:.4f}")
|
244 |
+
print(f"Final Score: {rec['final_score']:.4f}")
|
245 |
+
print(f"Reason: {rec['match_reason']}\n")
|
246 |
+
|
247 |
+
result = format_recommendation_html(final_recommendations)
|
248 |
+
return [gr.update(value=result), gr.update(visible=False)]
|
249 |
+
|
250 |
+
except Exception as e:
|
251 |
+
error_msg = f"Error processing your description. Details: {str(e)}"
|
252 |
+
return [gr.update(value=error_msg), gr.update(visible=False)]
|
253 |
+
|
254 |
+
def show_loading():
|
255 |
+
return [gr.update(value=""), gr.update(visible=True)]
|
256 |
+
|
257 |
+
|
258 |
+
get_recommendations_btn.click(
|
259 |
+
fn=on_find_match_click,
|
260 |
+
inputs=[
|
261 |
+
living_space,
|
262 |
+
exercise_time,
|
263 |
+
grooming_commitment,
|
264 |
+
experience_level,
|
265 |
+
has_children,
|
266 |
+
noise_tolerance
|
267 |
+
],
|
268 |
+
outputs=recommendation_output
|
269 |
+
)
|
270 |
+
|
271 |
+
description_search_btn.click(
|
272 |
+
fn=show_loading, # 先顯示加載消息
|
273 |
+
outputs=[description_output, loading_msg]
|
274 |
+
).then( # 然後執行搜索
|
275 |
+
fn=on_description_search,
|
276 |
+
inputs=[description_input],
|
277 |
+
outputs=[description_output, loading_msg]
|
278 |
+
)
|
279 |
+
|
280 |
+
return {
|
281 |
+
'living_space': living_space,
|
282 |
+
'exercise_time': exercise_time,
|
283 |
+
'grooming_commitment': grooming_commitment,
|
284 |
+
'experience_level': experience_level,
|
285 |
+
'has_children': has_children,
|
286 |
+
'noise_tolerance': noise_tolerance,
|
287 |
+
'get_recommendations_btn': get_recommendations_btn,
|
288 |
+
'recommendation_output': recommendation_output,
|
289 |
+
'description_input': description_input,
|
290 |
+
'description_search_btn': description_search_btn,
|
291 |
+
'description_output': description_output
|
292 |
+
}
|
description_search_ui.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
def create_description_search_tab():
|
5 |
+
"""創建描述搜尋頁面的UI程式碼"""
|
6 |
+
guide_html = """
|
7 |
+
<div class="breed-search-container">
|
8 |
+
<div class="description-guide">
|
9 |
+
<h2 class="guide-title" style="
|
10 |
+
background: linear-gradient(90deg, #4299e1, #48bb78);
|
11 |
+
-webkit-background-clip: text;
|
12 |
+
-webkit-text-fill-color: transparent;
|
13 |
+
font-weight: 600;
|
14 |
+
font-size: 1.8em;
|
15 |
+
">🐾 Describe Your Ideal Dog</h2>
|
16 |
+
|
17 |
+
<div class="guide-content">
|
18 |
+
<p class="intro-text" style="
|
19 |
+
background: linear-gradient(90deg, #4299e1, #48bb78);
|
20 |
+
-webkit-background-clip: text;
|
21 |
+
-webkit-text-fill-color: transparent;
|
22 |
+
font-weight: 600;
|
23 |
+
font-size: 1.2em;
|
24 |
+
margin-bottom: 20px;
|
25 |
+
">Help us find your perfect companion! Please consider including the following details:</p>
|
26 |
+
|
27 |
+
<div class="criteria-grid" style="
|
28 |
+
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
29 |
+
border-radius: 10px;
|
30 |
+
padding: 20px;
|
31 |
+
">
|
32 |
+
<div class="criteria-item">
|
33 |
+
<span class="icon">🏃</span>
|
34 |
+
<div class="criteria-content">
|
35 |
+
<h3>Activity Level</h3>
|
36 |
+
<p>Low • Moderate • High • Very Active</p>
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
|
40 |
+
<div class="criteria-item">
|
41 |
+
<span class="icon">🏠</span>
|
42 |
+
<div class="criteria-content">
|
43 |
+
<h3>Living Environment</h3>
|
44 |
+
<p>Apartment • House • Yard Space</p>
|
45 |
+
</div>
|
46 |
+
</div>
|
47 |
+
|
48 |
+
<div class="criteria-item">
|
49 |
+
<span class="icon">👨👩👧👦</span>
|
50 |
+
<div class="criteria-content">
|
51 |
+
<h3>Family Situation</h3>
|
52 |
+
<p>Children • Other Pets • Single Adult</p>
|
53 |
+
</div>
|
54 |
+
</div>
|
55 |
+
|
56 |
+
<div class="criteria-item">
|
57 |
+
<span class="icon">✂️</span>
|
58 |
+
<div class="criteria-content">
|
59 |
+
<h3>Grooming Commitment</h3>
|
60 |
+
<p>Low • Medium • High Maintenance</p>
|
61 |
+
</div>
|
62 |
+
</div>
|
63 |
+
|
64 |
+
<div class="criteria-item">
|
65 |
+
<span class="icon">🎭</span>
|
66 |
+
<div class="criteria-content">
|
67 |
+
<h3>Desired Personality</h3>
|
68 |
+
<p>Friendly • Independent • Intelligent • Calm</p>
|
69 |
+
</div>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
</div>
|
73 |
+
</div>
|
74 |
+
</div>
|
75 |
+
"""
|
76 |
+
|
77 |
+
# 增加 CSS 的樣式
|
78 |
+
css = """
|
79 |
+
<style>
|
80 |
+
.breed-search-container {
|
81 |
+
background: white;
|
82 |
+
border-radius: 12px;
|
83 |
+
padding: 24px;
|
84 |
+
margin-bottom: 20px;
|
85 |
+
}
|
86 |
+
.guide-title {
|
87 |
+
font-size: 1.8rem;
|
88 |
+
color: #2c3e50;
|
89 |
+
margin-bottom: 20px;
|
90 |
+
text-align: center;
|
91 |
+
}
|
92 |
+
.intro-text {
|
93 |
+
color: #666;
|
94 |
+
text-align: center;
|
95 |
+
margin-bottom: 24px;
|
96 |
+
font-size: 1.1rem;
|
97 |
+
}
|
98 |
+
.criteria-grid {
|
99 |
+
display: grid;
|
100 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
101 |
+
gap: 20px;
|
102 |
+
margin-bottom: 24px;
|
103 |
+
}
|
104 |
+
.criteria-item {
|
105 |
+
display: flex;
|
106 |
+
align-items: flex-start;
|
107 |
+
padding: 16px;
|
108 |
+
background: #f8fafc;
|
109 |
+
border-radius: 8px;
|
110 |
+
transition: all 0.3s ease;
|
111 |
+
}
|
112 |
+
.criteria-item:hover {
|
113 |
+
transform: translateY(-2px);
|
114 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
115 |
+
}
|
116 |
+
.criteria-item .icon {
|
117 |
+
font-size: 24px;
|
118 |
+
margin-right: 12px;
|
119 |
+
margin-top: 3px;
|
120 |
+
}
|
121 |
+
.criteria-content h3 {
|
122 |
+
font-size: 1.1rem;
|
123 |
+
color: #2c3e50;
|
124 |
+
margin: 0 0 4px 0;
|
125 |
+
}
|
126 |
+
.criteria-content p {
|
127 |
+
color: #666;
|
128 |
+
margin: 0;
|
129 |
+
font-size: 0.95rem;
|
130 |
+
}
|
131 |
+
</style>
|
132 |
+
"""
|
133 |
+
|
134 |
+
with gr.Column():
|
135 |
+
# 顯示指南和樣式
|
136 |
+
gr.HTML(css + guide_html)
|
137 |
+
|
138 |
+
# 描述輸入區
|
139 |
+
description_input = gr.Textbox(
|
140 |
+
label="",
|
141 |
+
placeholder="Example: I'm looking for a medium-sized, friendly dog that's good with kids...",
|
142 |
+
lines=5
|
143 |
+
)
|
144 |
+
|
145 |
+
# 搜索按鈕
|
146 |
+
search_button = gr.Button(
|
147 |
+
"Find My Perfect Match! 🔍",
|
148 |
+
variant="primary",
|
149 |
+
size="lg"
|
150 |
+
)
|
151 |
+
|
152 |
+
# 加載消息
|
153 |
+
loading_msg = gr.HTML("""
|
154 |
+
<div style='text-align: center; color: #666;'>
|
155 |
+
<p><b>Finding your perfect match...</b></p>
|
156 |
+
<p>Please wait 25-30 seconds while we analyze your preferences.</p>
|
157 |
+
</div>
|
158 |
+
""", visible=False)
|
159 |
+
|
160 |
+
# 結果顯示區域
|
161 |
+
result_output = gr.HTML(label="Breed Recommendations")
|
162 |
+
|
163 |
+
return description_input, search_button, result_output, loading_msg
|
smart_breed_matcher.py
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Dict, Tuple, Optional
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from breed_health_info import breed_health_info
|
7 |
+
from breed_noise_info import breed_noise_info
|
8 |
+
from dog_database import dog_data
|
9 |
+
from scoring_calculation_system import UserPreferences
|
10 |
+
from sentence_transformers import SentenceTransformer, util
|
11 |
+
|
12 |
+
class SmartBreedMatcher:
|
13 |
+
def __init__(self, dog_data: List[Tuple]):
|
14 |
+
self.dog_data = dog_data
|
15 |
+
self.model = SentenceTransformer('all-mpnet-base-v2')
|
16 |
+
self._embedding_cache = {}
|
17 |
+
|
18 |
+
def _get_cached_embedding(self, text: str) -> torch.Tensor:
|
19 |
+
if text not in self._embedding_cache:
|
20 |
+
self._embedding_cache[text] = self.model.encode(text)
|
21 |
+
return self._embedding_cache[text]
|
22 |
+
|
23 |
+
def _categorize_breeds(self) -> Dict:
|
24 |
+
"""自動將狗品種分類"""
|
25 |
+
categories = {
|
26 |
+
'working_dogs': [],
|
27 |
+
'herding_dogs': [],
|
28 |
+
'hunting_dogs': [],
|
29 |
+
'companion_dogs': [],
|
30 |
+
'guard_dogs': []
|
31 |
+
}
|
32 |
+
|
33 |
+
for breed_info in self.dog_data:
|
34 |
+
description = breed_info[9].lower()
|
35 |
+
temperament = breed_info[4].lower()
|
36 |
+
|
37 |
+
# 根據描述和性格特徵自動分類
|
38 |
+
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
|
39 |
+
categories['herding_dogs'].append(breed_info[1])
|
40 |
+
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
|
41 |
+
categories['hunting_dogs'].append(breed_info[1])
|
42 |
+
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
|
43 |
+
categories['companion_dogs'].append(breed_info[1])
|
44 |
+
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
|
45 |
+
categories['guard_dogs'].append(breed_info[1])
|
46 |
+
elif any(word in description for word in ['working', 'draft', 'cart']):
|
47 |
+
categories['working_dogs'].append(breed_info[1])
|
48 |
+
|
49 |
+
return categories
|
50 |
+
|
51 |
+
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
|
52 |
+
"""找出與指定品種最相似的其他品種"""
|
53 |
+
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
54 |
+
if not target_breed:
|
55 |
+
return []
|
56 |
+
|
57 |
+
# 獲取目標品種的特徵
|
58 |
+
target_features = {
|
59 |
+
'breed_name': target_breed[1], # 添加品種名稱
|
60 |
+
'size': target_breed[2],
|
61 |
+
'temperament': target_breed[4],
|
62 |
+
'exercise': target_breed[7],
|
63 |
+
'description': target_breed[9]
|
64 |
+
}
|
65 |
+
|
66 |
+
similarities = []
|
67 |
+
for breed in self.dog_data:
|
68 |
+
if breed[1] != breed_name:
|
69 |
+
breed_features = {
|
70 |
+
'breed_name': breed[1], # 添加品種名稱
|
71 |
+
'size': breed[2],
|
72 |
+
'temperament': breed[4],
|
73 |
+
'exercise': breed[7],
|
74 |
+
'description': breed[9]
|
75 |
+
}
|
76 |
+
|
77 |
+
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
|
78 |
+
similarities.append((breed[1], similarity_score))
|
79 |
+
|
80 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
|
81 |
+
|
82 |
+
|
83 |
+
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict) -> float:
|
84 |
+
"""計算兩個品種之間的相似度,包含健康和噪音因素"""
|
85 |
+
# 計算描述文本的相似度
|
86 |
+
desc1_embedding = self._get_cached_embedding(breed1_features['description'])
|
87 |
+
desc2_embedding = self._get_cached_embedding(breed2_features['description'])
|
88 |
+
description_similarity = float(util.pytorch_cos_sim(desc1_embedding, desc2_embedding))
|
89 |
+
|
90 |
+
# 基本特徵相似度
|
91 |
+
size_similarity = 1.0 if breed1_features['size'] == breed2_features['size'] else 0.5
|
92 |
+
exercise_similarity = 1.0 if breed1_features['exercise'] == breed2_features['exercise'] else 0.5
|
93 |
+
|
94 |
+
# 性格相似度
|
95 |
+
temp1_embedding = self._get_cached_embedding(breed1_features['temperament'])
|
96 |
+
temp2_embedding = self._get_cached_embedding(breed2_features['temperament'])
|
97 |
+
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
|
98 |
+
|
99 |
+
# 健康分數相似度
|
100 |
+
health_score1 = self._calculate_health_score(breed1_features['breed_name'])
|
101 |
+
health_score2 = self._calculate_health_score(breed2_features['breed_name'])
|
102 |
+
health_similarity = 1.0 - abs(health_score1 - health_score2)
|
103 |
+
|
104 |
+
# 噪音水平相似度
|
105 |
+
noise_similarity = self._calculate_noise_similarity(
|
106 |
+
breed1_features['breed_name'],
|
107 |
+
breed2_features['breed_name']
|
108 |
+
)
|
109 |
+
|
110 |
+
# 加權計算
|
111 |
+
weights = {
|
112 |
+
'description': 0.25,
|
113 |
+
'temperament': 0.20,
|
114 |
+
'exercise': 0.2,
|
115 |
+
'size': 0.05,
|
116 |
+
'health': 0.15,
|
117 |
+
'noise': 0.15
|
118 |
+
}
|
119 |
+
|
120 |
+
final_similarity = (
|
121 |
+
description_similarity * weights['description'] +
|
122 |
+
temperament_similarity * weights['temperament'] +
|
123 |
+
exercise_similarity * weights['exercise'] +
|
124 |
+
size_similarity * weights['size'] +
|
125 |
+
health_similarity * weights['health'] +
|
126 |
+
noise_similarity * weights['noise']
|
127 |
+
)
|
128 |
+
|
129 |
+
return final_similarity
|
130 |
+
|
131 |
+
|
132 |
+
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
|
133 |
+
smart_score: float, is_preferred: bool,
|
134 |
+
similarity_score: float = 0.0) -> Dict:
|
135 |
+
"""
|
136 |
+
計算最終分數,包含基礎分數和獎勵分數
|
137 |
+
|
138 |
+
Args:
|
139 |
+
breed_name: 品種名稱
|
140 |
+
base_scores: 基礎評分 (空間、運動等)
|
141 |
+
smart_score: 智能匹配分數
|
142 |
+
is_preferred: 是否為用戶指定品種
|
143 |
+
similarity_score: 與指定品種的相似度 (0-1)
|
144 |
+
"""
|
145 |
+
# 基礎權重
|
146 |
+
weights = {
|
147 |
+
'base': 0.6, # 基礎分數權重
|
148 |
+
'smart': 0.25, # 智能匹配權重
|
149 |
+
'bonus': 0.15 # 獎勵分數權重
|
150 |
+
}
|
151 |
+
|
152 |
+
# 計算基礎分數
|
153 |
+
base_score = base_scores.get('overall', 0.7)
|
154 |
+
|
155 |
+
# 計算獎勵分數
|
156 |
+
bonus_score = 0.0
|
157 |
+
if is_preferred:
|
158 |
+
# 用戶指定品種獲得最高獎勵
|
159 |
+
bonus_score = 0.95
|
160 |
+
elif similarity_score > 0:
|
161 |
+
# 相似品種獲得部分獎勵,但不超過80%的最高獎勵
|
162 |
+
bonus_score = min(0.8, similarity_score) * 0.95
|
163 |
+
|
164 |
+
# 計算最終分數
|
165 |
+
final_score = (
|
166 |
+
base_score * weights['base'] +
|
167 |
+
smart_score * weights['smart'] +
|
168 |
+
bonus_score * weights['bonus']
|
169 |
+
)
|
170 |
+
|
171 |
+
# 更新各項分數
|
172 |
+
scores = base_scores.copy()
|
173 |
+
|
174 |
+
# 如果是用戶指定品種,稍微提升各項基礎分數,但保持合理範圍
|
175 |
+
if is_preferred:
|
176 |
+
for key in scores:
|
177 |
+
if key != 'overall':
|
178 |
+
scores[key] = min(1.0, scores[key] * 1.1) # 最多提升10%
|
179 |
+
|
180 |
+
# 為相似品種調整分數
|
181 |
+
elif similarity_score > 0:
|
182 |
+
boost_factor = 1.0 + (similarity_score * 0.05) # 最多提升5%
|
183 |
+
for key in scores:
|
184 |
+
if key != 'overall':
|
185 |
+
scores[key] = min(0.95, scores[key] * boost_factor) # 確保不超過95%
|
186 |
+
|
187 |
+
return {
|
188 |
+
'final_score': round(final_score, 4),
|
189 |
+
'base_score': round(base_score, 4),
|
190 |
+
'bonus_score': round(bonus_score, 4),
|
191 |
+
'scores': {k: round(v, 4) for k, v in scores.items()}
|
192 |
+
}
|
193 |
+
|
194 |
+
def _calculate_health_score(self, breed_name: str) -> float:
|
195 |
+
"""計算品種的健康分數"""
|
196 |
+
if breed_name not in breed_health_info:
|
197 |
+
return 0.5
|
198 |
+
|
199 |
+
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
200 |
+
|
201 |
+
# 嚴重健康問題
|
202 |
+
severe_conditions = [
|
203 |
+
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
|
204 |
+
'bloat', 'progressive', 'syndrome'
|
205 |
+
]
|
206 |
+
|
207 |
+
# 中等健康問題
|
208 |
+
moderate_conditions = [
|
209 |
+
'allergies', 'infections', 'thyroid', 'luxation',
|
210 |
+
'skin problems', 'ear'
|
211 |
+
]
|
212 |
+
|
213 |
+
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
214 |
+
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
215 |
+
|
216 |
+
health_score = 1.0
|
217 |
+
health_score -= (severe_count * 0.1)
|
218 |
+
health_score -= (moderate_count * 0.05)
|
219 |
+
|
220 |
+
# 特殊條件調整(根據用戶偏好)
|
221 |
+
if hasattr(self, 'user_preferences'):
|
222 |
+
if self.user_preferences.has_children:
|
223 |
+
if 'requires frequent' in health_notes or 'regular monitoring' in health_notes:
|
224 |
+
health_score *= 0.9
|
225 |
+
|
226 |
+
if self.user_preferences.health_sensitivity == 'high':
|
227 |
+
health_score *= 0.9
|
228 |
+
|
229 |
+
return max(0.3, min(1.0, health_score))
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
|
234 |
+
"""計算兩個品種的噪音相似度"""
|
235 |
+
noise_levels = {
|
236 |
+
'Low': 1,
|
237 |
+
'Moderate': 2,
|
238 |
+
'High': 3,
|
239 |
+
'Unknown': 2 # 默認為中等
|
240 |
+
}
|
241 |
+
|
242 |
+
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
|
243 |
+
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
|
244 |
+
|
245 |
+
# 獲取數值級別
|
246 |
+
level1 = noise_levels.get(noise1, 2)
|
247 |
+
level2 = noise_levels.get(noise2, 2)
|
248 |
+
|
249 |
+
# 計算差異並歸一化
|
250 |
+
difference = abs(level1 - level2)
|
251 |
+
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
|
252 |
+
|
253 |
+
return similarity
|
254 |
+
|
255 |
+
def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
|
256 |
+
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
|
257 |
+
matches = []
|
258 |
+
# 預先計算描述的 embedding 並快取
|
259 |
+
desc_embedding = self._get_cached_embedding(description)
|
260 |
+
|
261 |
+
for breed in self.dog_data:
|
262 |
+
breed_name = breed[1]
|
263 |
+
breed_description = breed[9]
|
264 |
+
temperament = breed[4]
|
265 |
+
|
266 |
+
# 使用快取計算相似度
|
267 |
+
breed_desc_embedding = self._get_cached_embedding(breed_description)
|
268 |
+
breed_temp_embedding = self._get_cached_embedding(temperament)
|
269 |
+
|
270 |
+
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
271 |
+
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
272 |
+
|
273 |
+
# 其餘計算保持不變
|
274 |
+
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
|
275 |
+
health_score = self._calculate_health_score(breed_name)
|
276 |
+
health_similarity = 1.0 - abs(health_score - 0.8)
|
277 |
+
|
278 |
+
weights = {
|
279 |
+
'description': 0.35,
|
280 |
+
'temperament': 0.25,
|
281 |
+
'noise': 0.2,
|
282 |
+
'health': 0.2
|
283 |
+
}
|
284 |
+
|
285 |
+
final_score = (
|
286 |
+
desc_similarity * weights['description'] +
|
287 |
+
temp_similarity * weights['temperament'] +
|
288 |
+
noise_similarity * weights['noise'] +
|
289 |
+
health_similarity * weights['health']
|
290 |
+
)
|
291 |
+
|
292 |
+
matches.append({
|
293 |
+
'breed': breed_name,
|
294 |
+
'score': final_score,
|
295 |
+
'is_preferred': False,
|
296 |
+
'similarity': final_score,
|
297 |
+
'reason': "Matched based on description, temperament, noise level, and health score"
|
298 |
+
})
|
299 |
+
|
300 |
+
return sorted(matches, key=lambda x: -x['score'])[:top_n]
|
301 |
+
|
302 |
+
|
303 |
+
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
304 |
+
"""根據用戶描述匹配最適合的品種"""
|
305 |
+
preferred_breed = self._detect_breed_preference(description)
|
306 |
+
|
307 |
+
matches = []
|
308 |
+
if preferred_breed:
|
309 |
+
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n)
|
310 |
+
|
311 |
+
# 首先添加偏好品種
|
312 |
+
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
|
313 |
+
if breed_info:
|
314 |
+
health_score = self._calculate_health_score(preferred_breed)
|
315 |
+
noise_info = breed_noise_info.get(preferred_breed, {
|
316 |
+
"noise_level": "Unknown",
|
317 |
+
"noise_notes": "No noise information available"
|
318 |
+
})
|
319 |
+
|
320 |
+
# 偏好品種必定是最高分
|
321 |
+
matches.append({
|
322 |
+
'breed': preferred_breed,
|
323 |
+
'score': 1.0,
|
324 |
+
'is_preferred': True,
|
325 |
+
'similarity': 1.0,
|
326 |
+
'health_score': health_score,
|
327 |
+
'noise_level': noise_info['noise_level'],
|
328 |
+
'reason': "Directly matched your preferred breed"
|
329 |
+
})
|
330 |
+
|
331 |
+
# 添加相似品種
|
332 |
+
for breed_name, similarity in similar_breeds:
|
333 |
+
if breed_name != preferred_breed:
|
334 |
+
health_score = self._calculate_health_score(breed_name)
|
335 |
+
noise_info = breed_noise_info.get(breed_name, {
|
336 |
+
"noise_level": "Unknown",
|
337 |
+
"noise_notes": "No noise information available"
|
338 |
+
})
|
339 |
+
|
340 |
+
# 調整相似品種分數計算
|
341 |
+
base_similarity = similarity * 0.6
|
342 |
+
health_factor = health_score * 0.2
|
343 |
+
noise_factor = self._calculate_noise_similarity(preferred_breed, breed_name) * 0.2
|
344 |
+
|
345 |
+
# 確保相似品種分數不會超過偏好品種
|
346 |
+
final_score = min(0.95, base_similarity + health_factor + noise_factor)
|
347 |
+
|
348 |
+
matches.append({
|
349 |
+
'breed': breed_name,
|
350 |
+
'score': final_score,
|
351 |
+
'is_preferred': False,
|
352 |
+
'similarity': similarity,
|
353 |
+
'health_score': health_score,
|
354 |
+
'noise_level': noise_info['noise_level'],
|
355 |
+
'reason': f"Similar to {preferred_breed} in characteristics, health profile, and noise level"
|
356 |
+
})
|
357 |
+
else:
|
358 |
+
matches = self._general_matching(description, top_n)
|
359 |
+
|
360 |
+
return sorted(matches,
|
361 |
+
key=lambda x: (-int(x.get('is_preferred', False)),
|
362 |
+
-x['score'], # 降序排列
|
363 |
+
x['breed']))[:top_n]
|
364 |
+
|
365 |
+
def _detect_breed_preference(self, description: str) -> Optional[str]:
|
366 |
+
"""檢測用戶是否提到特定品種"""
|
367 |
+
description_lower = description.lower()
|
368 |
+
|
369 |
+
for breed_info in self.dog_data:
|
370 |
+
breed_name = breed_info[1]
|
371 |
+
normalized_breed = breed_name.lower().replace('_', ' ')
|
372 |
+
|
373 |
+
if any(phrase in description_lower for phrase in [
|
374 |
+
f"love {normalized_breed}",
|
375 |
+
f"like {normalized_breed}",
|
376 |
+
f"prefer {normalized_breed}",
|
377 |
+
f"want {normalized_breed}",
|
378 |
+
normalized_breed
|
379 |
+
]):
|
380 |
+
return breed_name
|
381 |
+
|
382 |
+
return None
|