DawnC commited on
Commit
1d42c02
·
verified ·
1 Parent(s): 459d2de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -302,7 +302,7 @@ async def detect_multiple_dogs(image):
302
 
303
  async def predict(image):
304
  if image is None:
305
- return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
306
 
307
  try:
308
  if isinstance(image, np.ndarray):
@@ -311,12 +311,15 @@ async def predict(image):
311
  dogs = await detect_multiple_dogs(image)
312
 
313
  if len(dogs) == 0:
314
- return "No dogs detected. Please upload a clear image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
315
 
316
  explanations = []
317
  annotated_image = image.copy()
318
  draw = ImageDraw.Draw(annotated_image)
319
- font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
 
 
 
320
 
321
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
322
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
@@ -324,7 +327,8 @@ async def predict(image):
324
  # 繪製更醒目的邊框和標籤
325
  draw.rectangle(box, outline="red", width=5)
326
  label = f"Dog {i}"
327
- label_size = draw.textsize(label, font=font)
 
328
  draw.rectangle([box[0], box[1], box[0] + label_size[0], box[1] + label_size[1]], fill="red")
329
  draw.text((box[0], box[1]), label, fill="white", font=font)
330
 
@@ -355,10 +359,10 @@ async def predict(image):
355
  description = get_dog_description(breed)
356
  final_explanation += f"\n\n<div id='breed_{i}_{j}' style='display:none;'>\n\n{format_description(description, breed)}\n\n</div>"
357
 
358
- return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
359
 
360
  except Exception as e:
361
- return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
362
 
363
  # Gradio 界面設置
364
  with gr.Blocks(css="""
 
302
 
303
  async def predict(image):
304
  if image is None:
305
+ return "Please upload an image to start.", None
306
 
307
  try:
308
  if isinstance(image, np.ndarray):
 
311
  dogs = await detect_multiple_dogs(image)
312
 
313
  if len(dogs) == 0:
314
+ return "No dogs detected. Please upload a clear image of a dog.", None
315
 
316
  explanations = []
317
  annotated_image = image.copy()
318
  draw = ImageDraw.Draw(annotated_image)
319
+ try:
320
+ font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
321
+ except IOError:
322
+ font = ImageFont.load_default()
323
 
324
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
325
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
 
327
  # 繪製更醒目的邊框和標籤
328
  draw.rectangle(box, outline="red", width=5)
329
  label = f"Dog {i}"
330
+ label_bbox = font.getbbox(label)
331
+ label_size = (label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1])
332
  draw.rectangle([box[0], box[1], box[0] + label_size[0], box[1] + label_size[1]], fill="red")
333
  draw.text((box[0], box[1]), label, fill="white", font=font)
334
 
 
359
  description = get_dog_description(breed)
360
  final_explanation += f"\n\n<div id='breed_{i}_{j}' style='display:none;'>\n\n{format_description(description, breed)}\n\n</div>"
361
 
362
+ return final_explanation, annotated_image
363
 
364
  except Exception as e:
365
+ return f"An error occurred: {e}", None
366
 
367
  # Gradio 界面設置
368
  with gr.Blocks(css="""