Peter
:tada: init from template
74b8229
raw
history blame
10.4 kB
"""
utils - general utility functions for loading, saving, and manipulating data
"""
import os
from pathlib import Path
import pprint as pp
import re
import shutil # zipfile formats
from datetime import datetime
from os.path import basename
from os.path import getsize, join
import requests
from cleantext import clean
from natsort import natsorted
from symspellpy import SymSpell
import pandas as pd
from tqdm.auto import tqdm
from contextlib import contextmanager
import sys
import os
@contextmanager
def suppress_stdout():
"""
suppress_stdout - suppress stdout for a given block of code. credit to https://newbedev.com/how-to-suppress-console-output-in-python
"""
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def remove_string_extras(mytext):
# removes everything from a string except A-Za-z0-9 .,;
return re.sub(r"[^A-Za-z0-9 .,;]+", "", mytext)
def corr(s):
# adds space after period if there isn't one
# removes extra spaces
return re.sub(r"\.(?! )", ". ", re.sub(r" +", " ", s))
def get_timestamp():
# get timestamp for file names
return datetime.now().strftime("%b-%d-%Y_t-%H")
def print_spacer(n=1):
"""print_spacer - print a spacer line"""
print("\n -------- " * n)
def fast_scandir(dirname: str):
"""
fast_scandir [an os.path-based means to return all subfolders in a given filepath]
"""
subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()]
for dirname in list(subfolders):
subfolders.extend(fast_scandir(dirname))
return subfolders # list
def create_folder(directory: str):
# you will never guess what this does
os.makedirs(directory, exist_ok=True)
def chunks(lst: list, n: int):
"""
chunks - Yield successive n-sized chunks from lst
Args: lst (list): list to be chunked
n (int): size of chunks
"""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def chunky_pandas(my_df, num_chunks: int = 4):
"""
chunky_pandas [split dataframe into `num_chunks` equal chunks, return each inside a list]
Args:
my_df (pd.DataFrame)
num_chunks (int, optional): Defaults to 4.
Returns:
list: a list of dataframes
"""
n = int(len(my_df) // num_chunks)
list_df = [my_df[i : i + n] for i in range(0, my_df.shape[0], n)]
return list_df
def load_dir_files(
directory: str, req_extension=".txt", return_type="list", verbose=False
):
"""
load_dir_files - an os.path based method of returning all files with extension `req_extension` in a given directory and subdirectories
Args:
Returns:
list or dict: an iterable of filepaths or a dict of filepaths and their respective filenames
"""
appr_files = []
# r=root, d=directories, f = files
for r, d, f in os.walk(directory):
for prefile in f:
if prefile.endswith(req_extension):
fullpath = os.path.join(r, prefile)
appr_files.append(fullpath)
appr_files = natsorted(appr_files)
if verbose:
print("A list of files in the {} directory are: \n".format(directory))
if len(appr_files) < 10:
pp.pprint(appr_files)
else:
pp.pprint(appr_files[:10])
print("\n and more. There are a total of {} files".format(len(appr_files)))
if return_type.lower() == "list":
return appr_files
else:
if verbose:
print("returning dictionary")
appr_file_dict = {}
for this_file in appr_files:
appr_file_dict[basename(this_file)] = this_file
return appr_file_dict
def URL_string_filter(text):
"""
URL_string_filter - filter out nonstandard "text" characters
"""
custom_printable = (
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ._"
)
filtered = "".join((filter(lambda i: i in custom_printable, text)))
return filtered
def getFilename_fromCd(cd):
"""getFilename_fromCd - get the filename from a given cd str"""
if not cd:
return None
fname = re.findall("filename=(.+)", cd)
if len(fname) > 0:
output = fname[0]
elif cd.find("/"):
possible_fname = cd.rsplit("/", 1)[1]
output = URL_string_filter(possible_fname)
else:
output = None
return output
def get_zip_URL(
URLtoget: str,
extract_loc: str = None,
file_header: str = "dropboxexport_",
verbose: bool = False,
):
"""get_zip_URL - download a zip file from a given URL and extract it to a given location"""
r = requests.get(URLtoget, allow_redirects=True)
names = getFilename_fromCd(r.headers.get("content-disposition"))
fixed_fnames = names.split(";") # split the multiple results
this_filename = file_header + URL_string_filter(fixed_fnames[0])
# define paths and save the zip file
if extract_loc is None:
extract_loc = "dropbox_dl"
dl_place = join(os.getcwd(), extract_loc)
create_folder(dl_place)
save_loc = join(os.getcwd(), this_filename)
open(save_loc, "wb").write(r.content)
if verbose:
print("downloaded file size was {} MB".format(getsize(save_loc) / 1000000))
# unpack the archive
shutil.unpack_archive(save_loc, extract_dir=dl_place)
if verbose:
print("extracted zip file - ", datetime.now())
x = load_dir_files(dl_place, req_extension="", verbose=verbose)
# remove original
try:
os.remove(save_loc)
del save_loc
except Exception:
print("unable to delete original zipfile - check if exists", datetime.now())
print("finished extracting zip - ", datetime.now())
return dl_place
def merge_dataframes(data_dir: str, ext=".xlsx", verbose=False):
"""
merge_dataframes - given a filepath, loads and attempts to merge all files as dataframes
Args:
data_dir (str): [root directory to search in]
ext (str, optional): [anticipate file extension for the dataframes ]. Defaults to '.xlsx'.
Returns:
pd.DataFrame(): merged dataframe of all files
"""
src = Path(data_dir)
src_str = str(src.resolve())
mrg_df = pd.DataFrame()
all_reports = load_dir_files(directory=src_str, req_extension=ext, verbose=verbose)
failed = []
for df_path in tqdm(all_reports, total=len(all_reports), desc="joining data..."):
try:
this_df = pd.read_excel(df_path).convert_dtypes()
mrg_df = pd.concat([mrg_df, this_df], axis=0)
except Exception:
short_p = os.path.basename(df_path)
print(
f"WARNING - file with extension {ext} and name {short_p} could not be read."
)
failed.append(short_p)
if len(failed) > 0:
print("failed to merge {} files, investigate as needed")
if verbose:
pp.pprint(mrg_df.info(True))
return mrg_df
def download_URL(url: str, file=None, dlpath=None, verbose=False):
"""
download_URL - download a file from a URL and show progress bar
Parameters
----------
url : str
URL to download
file : [type], optional
[description], by default None
dlpath : [type], optional
[description], by default None
verbose : bool, optional
[description], by default False
Returns
-------
str - path to the downloaded file
"""
if file is None:
if "?dl=" in url:
# is a dropbox link
prefile = url.split("/")[-1]
filename = str(prefile).split("?dl=")[0]
else:
filename = url.split("/")[-1]
file = clean(filename)
if dlpath is None:
dlpath = Path.cwd() # save to current working directory
else:
dlpath = Path(dlpath) # make a path object
r = requests.get(url, stream=True, allow_redirects=True)
total_size = int(r.headers.get("content-length"))
initial_pos = 0
dl_loc = dlpath / file
with open(str(dl_loc.resolve()), "wb") as f:
with tqdm(
total=total_size,
unit="B",
unit_scale=True,
desc=file,
initial=initial_pos,
ascii=True,
) as pbar:
for ch in r.iter_content(chunk_size=1024):
if ch:
f.write(ch)
pbar.update(len(ch))
if verbose:
print(f"\ndownloaded {file} to {dlpath}\n")
return str(dl_loc.resolve())
def dl_extract_zip(
URLtoget: str,
extract_loc: str = None,
file_header: str = "TEMP_archive_dl_",
verbose: bool = False,
):
"""
dl_extract_zip - generic function to download a zip file and extract it
Parameters
----------
URLtoget : str
zip file URL to download
extract_loc : str, optional
directory to extract zip to , by default None
file_header : str, optional
[description], by default "TEMP_archive_dl_"
verbose : bool, optional
[description], by default False
Returns
-------
str - path to the downloaded and extracted folder
"""
extract_loc = Path(extract_loc)
extract_loc.mkdir(parents=True, exist_ok=True)
save_loc = download_URL(
url=URLtoget, file=f"{file_header}.zip", dlpath=None, verbose=verbose
)
shutil.unpack_archive(save_loc, extract_dir=extract_loc)
if verbose:
print("extracted zip file - ", datetime.now())
x = load_dir_files(extract_loc, req_extension="", verbose=verbose)
# remove original
try:
os.remove(save_loc)
del save_loc
except Exception:
print("unable to delete original zipfile - check if exists", datetime.now())
if verbose:
print("finished extracting zip - ", datetime.now())
return extract_loc
def cleantxt_wrap(ugly_text, all_lower=False):
"""
cleantxt_wrap - applies the clean function to a string.
Args:
ugly_text (str): [string to be cleaned]
Returns:
[str]: [cleaned string]
"""
if isinstance(ugly_text, str) and len(ugly_text) > 0:
return clean(ugly_text, lower=all_lower)
else:
return ugly_text