Spaces:
Sleeping
Sleeping
maximuspowers
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizerFast, BertForTokenClassification
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# init important things
|
7 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
8 |
+
model = BertForTokenClassification.from_pretrained('ethical-spectacle/social-bias-ner')
|
9 |
+
model.eval()
|
10 |
+
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
# ids to labels we want to display
|
13 |
+
id2label = {
|
14 |
+
0: 'O',
|
15 |
+
1: 'B-STEREO',
|
16 |
+
2: 'I-STEREO',
|
17 |
+
3: 'B-GEN',
|
18 |
+
4: 'I-GEN',
|
19 |
+
5: 'B-UNFAIR',
|
20 |
+
6: 'I-UNFAIR'
|
21 |
+
}
|
22 |
+
|
23 |
+
# predict function you'll want to use if using in your own code
|
24 |
+
def predict_ner_tags(sentence):
|
25 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
26 |
+
input_ids = inputs['input_ids'].to(model.device)
|
27 |
+
attention_mask = inputs['attention_mask'].to(model.device)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
31 |
+
logits = outputs.logits
|
32 |
+
probabilities = torch.sigmoid(logits)
|
33 |
+
predicted_labels = (probabilities > 0.5).int() # remember to try your own threshold
|
34 |
+
|
35 |
+
result = []
|
36 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
37 |
+
for i, token in enumerate(tokens):
|
38 |
+
if token not in tokenizer.all_special_tokens:
|
39 |
+
label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
|
40 |
+
labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
|
41 |
+
result.append({"token": token, "labels": labels})
|
42 |
+
|
43 |
+
return json.dumps(result, indent=4)
|