Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,9 @@ def predict_sentiment(text_input, model_selection):
|
|
22 |
predicted_class = int(logits.argmax())
|
23 |
inference_time = end_time - start_time
|
24 |
model_size = model.num_parameters()
|
25 |
-
|
|
|
|
|
26 |
else:
|
27 |
start_time = time.time()
|
28 |
result = pretrained_model(text_input, candidate_labels)
|
@@ -30,7 +32,9 @@ def predict_sentiment(text_input, model_selection):
|
|
30 |
predicted_class = result["labels"][0]
|
31 |
inference_time = end_time - start_time
|
32 |
model_size = pretrained_tokenizer.model_max_length + pretrained_model.model.num_parameters()
|
33 |
-
|
|
|
|
|
34 |
|
35 |
inputs = [
|
36 |
gr.inputs.Textbox("Enter text"),
|
@@ -41,6 +45,7 @@ outputs = [
|
|
41 |
gr.outputs.Textbox(label="Predicted Sentiment"),
|
42 |
gr.outputs.Textbox(label="Inference Time (s)"),
|
43 |
gr.outputs.Textbox(label="Model Size (params)"),
|
|
|
44 |
]
|
45 |
|
46 |
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="roberta-large-mnli fine tuned with poem_sentiment dataset for sentiment analysis", examples=[
|
|
|
22 |
predicted_class = int(logits.argmax())
|
23 |
inference_time = end_time - start_time
|
24 |
model_size = model.num_parameters()
|
25 |
+
architecture = model.config.architectures[0]
|
26 |
+
#batch_size = inputs['input_ids'].shape[0]
|
27 |
+
return candidate_labels[predicted_class], inference_time, model_size, architecture
|
28 |
else:
|
29 |
start_time = time.time()
|
30 |
result = pretrained_model(text_input, candidate_labels)
|
|
|
32 |
predicted_class = result["labels"][0]
|
33 |
inference_time = end_time - start_time
|
34 |
model_size = pretrained_tokenizer.model_max_length + pretrained_model.model.num_parameters()
|
35 |
+
architecture = pretrained_model.model.config.architectures[0]
|
36 |
+
#batch_size = 1
|
37 |
+
return predicted_class, inference_time, model_size, architecture
|
38 |
|
39 |
inputs = [
|
40 |
gr.inputs.Textbox("Enter text"),
|
|
|
45 |
gr.outputs.Textbox(label="Predicted Sentiment"),
|
46 |
gr.outputs.Textbox(label="Inference Time (s)"),
|
47 |
gr.outputs.Textbox(label="Model Size (params)"),
|
48 |
+
gr.outputs.Textbox(label="Architecture"),
|
49 |
]
|
50 |
|
51 |
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="roberta-large-mnli fine tuned with poem_sentiment dataset for sentiment analysis", examples=[
|