eco-sim / app.py
ethanrom's picture
Upload 7 files
aacc1ec
import streamlit as st
import plotly.graph_objects as go
import json
import os
import numpy as np
from streamlit_option_menu import option_menu
from markup import app_intro, how_use_intro
from sklearn.linear_model import LinearRegression
from default_text import default_text4, default_text5
from generate_plot import generate_plot, set_openai_api_key
PASSWORD = 'Ethan101'
def authenticate(password):
return password == PASSWORD
def tab1():
st.header("Economic Simulator and Python Coding Tutor")
col1, col2 = st.columns([1, 2])
with col1:
st.image("image.jpg", use_column_width=True)
with col2:
st.markdown(app_intro(), unsafe_allow_html=True)
st.markdown(how_use_intro(),unsafe_allow_html=True)
github_link = '[<img src="https://badgen.net/badge/icon/github?icon=github&label">](https://github.com/ethanrom)'
huggingface_link = '[<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">](https://huggingface.co/ethanrom)'
st.write(github_link + '&nbsp;&nbsp;&nbsp;' + huggingface_link, unsafe_allow_html=True)
def simulate_economy(monthly_individual_income, monthly_individual_expense, start_month, start_year, num_months=12):
income_params = json.loads(monthly_individual_income)
expense_params = json.loads(monthly_individual_expense)
# Simulate economic data
np.random.seed(42)
monthly_income = np.random.normal(loc=income_params["mean"], scale=income_params["standarddeviation"], size=num_months)
monthly_income = np.clip(monthly_income, income_params["min"], income_params["max"])
monthly_expense = np.random.normal(loc=expense_params["mean"], scale=expense_params["standarddeviation"], size=num_months)
monthly_expense = np.clip(monthly_expense, expense_params["min"], expense_params["max"])
total_income_per_year = np.sum(monthly_income) * 12
average_income_per_year = np.mean(monthly_income) * 12
families_beyond_means = np.sum(monthly_income < monthly_expense)
families_paycheck_to_paycheck = np.sum(monthly_income >= monthly_expense)
return families_beyond_means, families_paycheck_to_paycheck, average_income_per_year, monthly_income, monthly_expense
def plot_line_chart(data, x_label, y_label, title):
fig = go.Figure()
fig.add_trace(go.Scatter(x=list(range(len(data))), y=data, mode='lines', name=title))
fig.update_layout(title=title, xaxis_title=x_label, yaxis_title=y_label)
return fig
def tab2():
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
st.header("User Inputs")
monthly_individual_income = st.text_area("Monthly Individual Income (Python code snippet)", value='''{
"mean": 4000,
"min": 1200,
"max": 15000,
"standarddeviation": 2000
}''')
monthly_individual_expense = st.text_area("Monthly Individual Expense (Python code snippet)", value='''{
"mean": 4000,
"min": 1200,
"max": 15000,
"standarddeviation": 2000
}''')
start_month = st.selectbox("Start Month", ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'])
start_year = st.number_input("Start Year", min_value=1900, max_value=2100, value=2021)
if st.button("Run Simulation"):
try:
num_months = 12
families_beyond_means, families_paycheck_to_paycheck, average_income_per_year, monthly_income, monthly_expense = simulate_economy(monthly_individual_income, monthly_individual_expense, start_month, start_year, num_months)
st.header("Simulation Results")
st.write(f"Number of families living beyond their means: {families_beyond_means}")
st.write(f"Number of families living paycheck to paycheck: {families_paycheck_to_paycheck}")
st.write(f"Average income per year: ${average_income_per_year:.2f}")
st.header("Monthly Income and Expense")
income_chart = plot_line_chart(monthly_income, "Month", "Income", "Monthly Individual Income")
st.plotly_chart(income_chart)
expense_chart = plot_line_chart(monthly_expense, "Month", "Expense", "Monthly Individual Expense")
st.plotly_chart(expense_chart)
st.header("Code Snippets")
st.subheader("Calculation of Number of Families living beyond their means")
st.code("""
import numpy as np
# Assuming monthly_income and monthly_expense are numpy arrays
families_beyond_means = np.sum(monthly_income < monthly_expense)
""", language="python")
st.subheader("Calculation of Number of Families living paycheck to paycheck")
st.code("""
import numpy as np
# Assuming monthly_income and monthly_expense are numpy arrays
families_paycheck_to_paycheck = np.sum(monthly_income >= monthly_expense)
""", language="python")
st.subheader("Calculation of Average income per year")
st.code(f"""
# Assuming monthly_income is a numpy array
average_income_per_year = np.mean(monthly_income) * 12
""", language="python")
except Exception as e:
st.error(f"An error occurred: {e}")
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def tab3():
st.header("Python Plotly Coding Tutor")
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
# Economy-related example data
years = np.arange(2010, 2022)
gdp = [12500, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000]
unemployment_rate = [8.3, 7.9, 7.2, 6.8, 6.1, 5.6, 5.2, 4.8, 4.3, 4.1, 3.9, 3.7]
st.subheader("Example: GDP over the Years")
st.write("Below is a plot showing the GDP growth over the years.")
# Plotting GDP over the years using Plotly
fig_gdp = go.Figure()
fig_gdp.add_trace(go.Scatter(x=years, y=gdp, mode='lines+markers', name='GDP'))
fig_gdp.update_layout(title='GDP Growth Over the Years',
xaxis_title='Year',
yaxis_title='GDP (Billion USD)')
# Display Python code and explanation
st.write("Python code for GDP plot:")
st.code("""
# Import necessary libraries
import plotly.graph_objects as go
import numpy as np
# Sample data for years and GDP
years = np.arange(2010, 2022)
gdp = [12500, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000]
# Create a Plotly figure object
fig_gdp = go.Figure()
# Add a line plot for GDP data
fig_gdp.add_trace(go.Scatter(x=years, y=gdp, mode='lines+markers', name='GDP'))
# Customize the plot layout
fig_gdp.update_layout(title='GDP Growth Over the Years',
xaxis_title='Year',
yaxis_title='GDP (Billion USD)')
# Display the plot
st.plotly_chart(fig_gdp)
""")
st.write("This code uses the Plotly library to create an interactive line plot showing the GDP growth over the years. First, we import the necessary libraries, including Plotly and NumPy (for generating sample data). Next, we define the data for the years and the corresponding GDP values. We then create a Plotly figure object (`fig_gdp`) and add a line plot to it using the `go.Scatter` function. The plot is customized with a title and axis labels using the `update_layout` method. Finally, we use `st.plotly_chart` to display the plot in the Streamlit app.")
# Display the plot
st.plotly_chart(fig_gdp)
st.subheader("Example: Unemployment Rate over the Years")
st.write("Below is a plot showing the unemployment rate over the years.")
# Plotting unemployment rate over the years using Plotly
fig_unemployment = go.Figure()
fig_unemployment.add_trace(go.Scatter(x=years, y=unemployment_rate, mode='lines+markers', name='Unemployment Rate'))
fig_unemployment.update_layout(title='Unemployment Rate Over the Years',
xaxis_title='Year',
yaxis_title='Unemployment Rate (%)')
# Display Python code and explanation
st.write("Python code for Unemployment Rate plot:")
st.code("""
# Import necessary libraries
import plotly.graph_objects as go
import numpy as np
# Sample data for years and unemployment rate
years = np.arange(2010, 2022)
unemployment_rate = [8.3, 7.9, 7.2, 6.8, 6.1, 5.6, 5.2, 4.8, 4.3, 4.1, 3.9, 3.7]
# Create a Plotly figure object
fig_unemployment = go.Figure()
# Add a line plot for unemployment rate data
fig_unemployment.add_trace(go.Scatter(x=years, y=unemployment_rate, mode='lines+markers', name='Unemployment Rate'))
# Customize the plot layout
fig_unemployment.update_layout(title='Unemployment Rate Over the Years',
xaxis_title='Year',
yaxis_title='Unemployment Rate (%)')
# Display the plot
st.plotly_chart(fig_unemployment)
""")
st.write("This code uses the Plotly library to create an interactive line plot showing the unemployment rate over the years. Similar to the previous example, we import the necessary libraries and define the data for the years and the corresponding unemployment rate. We then create a Plotly figure object (`fig_unemployment`) and add a line plot to it using the `go.Scatter` function. The plot is customized with a title and axis labels using the `update_layout` method. Finally, we use `st.plotly_chart` to display the plot in the Streamlit app.")
# Display the plot
st.plotly_chart(fig_unemployment)
st.subheader("Try Your Own Plotly Code!")
st.write("You can type in your Plotly code below and click the 'Run Code' button to see your plot.")
# Code input text area
code_input = st.text_area("Type your Plotly code here:")
# Run button
if st.button("Run Code"):
try:
# Execute the user's code
exec(code_input)
except Exception as e:
st.error(f"Error: {e}")
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def tab4():
st.header("Customizable Plot with Plotly")
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
example_x_values = [2010, 2011, 2012, 2013, 2014, 2015]
example_y_values = [12500, 13000, 14000, 15000, 16000, 17000]
st.subheader("Customize Your Plot:")
col1, col2 = st.columns([1, 2])
with col1:
x_axis = st.text_input("Enter X-axis title:", "Years")
y_axis = st.text_input("Enter Y-axis title:", "GDP")
chart_type = st.selectbox("Choose Chart Type:", ["Scatter", "Line", "Bar"])
line_mode = st.selectbox("Choose Line Mode:", ["lines", "lines+markers", "markers"])
plot_color = st.color_picker("Choose Plot Color:", "#1f77b4")
with col2:
x_values = st.text_area("Enter X-axis values (comma-separated):", ", ".join(map(str, example_x_values)))
y_values = st.text_area("Enter Y-axis values (comma-separated):", ", ".join(map(str, example_y_values)))
try:
x_values = [float(x.strip()) for x in x_values.split(",")]
y_values = [float(y.strip()) for y in y_values.split(",")]
except ValueError:
st.error("Invalid input for x or y axis. Please enter valid numeric values.")
fig_custom = go.Figure()
if chart_type == "Scatter":
fig_custom.add_trace(go.Scatter(x=x_values, y=y_values, mode=line_mode, name=y_axis, marker_color=plot_color))
elif chart_type == "Line":
fig_custom.add_trace(go.Line(x=x_values, y=y_values, mode=line_mode, name=y_axis, line_color=plot_color))
elif chart_type == "Bar":
fig_custom.add_trace(go.Bar(x=x_values, y=y_values, name=y_axis, marker_color=plot_color))
fig_custom.update_layout(title=f"{y_axis} vs. {x_axis}",
xaxis_title=x_axis,
yaxis_title=y_axis)
st.subheader("Customized Plot:")
st.plotly_chart(fig_custom)
st.subheader("Python Code to Create the Customized Plot:")
code = f"""
import plotly.graph_objects as go
x_values = {x_values}
y_values = {y_values}
fig_custom = go.Figure()
"""
if chart_type == "Scatter":
code += f"""
fig_custom.add_trace(go.Scatter(x=x_values, y=y_values, mode='{line_mode}', name='{y_axis}', marker_color='{plot_color}'))
"""
elif chart_type == "Line":
code += f"""
fig_custom.add_trace(go.Line(x=x_values, y=y_values, mode='{line_mode}', name='{y_axis}', line_color='{plot_color}'))
"""
elif chart_type == "Bar":
code += f"""
fig_custom.add_trace(go.Bar(x=x_values, y=y_values, name='{y_axis}', marker_color='{plot_color}'))
"""
code += f"""
fig_custom.update_layout(title='{y_axis} vs. {x_axis}',
xaxis_title='{x_axis}',
yaxis_title='{y_axis}')
"""
st.code(code)
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def tab5():
st.header("Building Predictive Models with Plotly")
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
np.random.seed(42)
x = np.arange(1, 11)
y = 2 * x + 3 + np.random.randn(10)
st.subheader("Linear Regression Example:")
st.write("Let's consider a simple linear regression example using the following data:")
col1, col2 = st.columns(2)
with col1:
st.write("X (Independent Variable):", x)
with col2:
st.write("Y (Dependent Variable):", y)
fig_data = go.Figure()
fig_data.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Data Points'))
fig_data.update_layout(title='Data Points for Linear Regression',
xaxis_title='X (Independent Variable)',
yaxis_title='Y (Dependent Variable)')
with col1:
st.plotly_chart(fig_data)
model = LinearRegression()
x_reshaped = x.reshape(-1, 1)
model.fit(x_reshaped, y)
st.subheader("Interactivity and Model Adjustment:")
st.write("You can interact with the chart by adjusting the values of the slope and intercept.")
st.write("Changing these parameters will modify the regression line and the predictions.")
st.write("Feel free to experiment and observe how the line fits the data differently.")
# Sliders for slope and intercept
slope_slider = st.slider("Slope (Coefficient)", min_value=-10.0, max_value=10.0, value=2.0, step=0.1)
intercept_slider = st.slider("Intercept", min_value=-10.0, max_value=10.0, value=3.0, step=0.1)
# Calculate predictions based on user-adjusted slope and intercept
y_pred_adjusted = slope_slider * x + intercept_slider
fig_regression = go.Figure()
fig_regression.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Data Points'))
fig_regression.add_trace(go.Scatter(x=x, y=y_pred_adjusted, mode='lines', name='Regression Line', line=dict(color='red')))
fig_regression.update_layout(title='Linear Regression',
xaxis_title='X (Independent Variable)',
yaxis_title='Y (Dependent Variable)')
st.plotly_chart(fig_regression)
st.subheader("Interpreting Model Coefficients:")
st.write("The slope of the regression line represents how much Y changes for a one-unit increase in X.")
st.write("The intercept is the value of Y when X is 0. In our example, the intercept is 3.")
st.write("For each unit increase in X, Y increases by the slope you adjusted using the slider.")
st.subheader("Python Code for Linear Regression:")
code = """
import numpy as np
from sklearn.linear_model import LinearRegression
# Sample data for linear regression example
x = np.arange(1, 11)
y = 2 * x + 3 + np.random.randn(10)
# Perform linear regression and get the predicted values
model = LinearRegression()
x_reshaped = x.reshape(-1, 1)
model.fit(x_reshaped, y)
slope = model.coef_[0]
intercept = model.intercept_
# Display the coefficients
print("Slope (Coefficient):", slope)
print("Intercept:", intercept)
"""
st.code(code)
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def tab6():
st.header("Auto Plot Generator")
st.markdown("Auto Generate code and plot for a given question")
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
openai_api_key = st.text_input("Enter your OpenAI API key:", type='password')
# Add the video display
video_file = "2023-07-22 19-52-10.mp4"
if os.path.exists(video_file):
st.video(video_file)
else:
st.warning("Video file not found.")
main_question = st.text_area("Enter Information here:", height=400, value=default_text4)
sub_question = st.text_area("Enter question here:", value=default_text5)
result = None
if st.button("Generate Code"):
if openai_api_key:
set_openai_api_key(openai_api_key)
with st.spinner('Thinking...'):
result = generate_plot(main_question, sub_question)
st.code(result)
st.session_state.generated_code = result
else:
st.warning("Please enter your OpenAI API key.")
if st.button("Show Plot"):
if 'generated_code' in st.session_state:
with st.spinner('Generating Plot...'):
exec(st.session_state.generated_code)
else:
st.warning("Please generate the code first.")
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def main():
st.set_page_config(page_title="Economic Simulator and Python Coding Tutor", page_icon=":memo:", layout="wide")
tabs = ["Intro", "Simulate", "Learn about plotly usage", "Building custom plots", "Building Predictive Models", "AI Plot Generation"]
with st.sidebar:
current_tab = option_menu("Select a Tab", tabs, menu_icon="cast")
tab_functions = {
"Intro": tab1,
"Simulate": tab2,
"Learn about plotly usage": tab3,
"Building custom plots": tab4,
"Building Predictive Models": tab5,
"AI Plot Generation": tab6,
}
if current_tab in tab_functions:
tab_functions[current_tab]()
if __name__ == "__main__":
main()