|
import streamlit as st |
|
import plotly.graph_objects as go |
|
import json |
|
import os |
|
import numpy as np |
|
from streamlit_option_menu import option_menu |
|
from markup import app_intro, how_use_intro |
|
from sklearn.linear_model import LinearRegression |
|
from default_text import default_text4, default_text5 |
|
from generate_plot import generate_plot, set_openai_api_key |
|
|
|
PASSWORD = 'Ethan101' |
|
|
|
def authenticate(password): |
|
return password == PASSWORD |
|
|
|
def tab1(): |
|
st.header("Economic Simulator and Python Coding Tutor") |
|
col1, col2 = st.columns([1, 2]) |
|
with col1: |
|
st.image("image.jpg", use_column_width=True) |
|
with col2: |
|
st.markdown(app_intro(), unsafe_allow_html=True) |
|
st.markdown(how_use_intro(),unsafe_allow_html=True) |
|
|
|
|
|
github_link = '[<img src="https://badgen.net/badge/icon/github?icon=github&label">](https://github.com/ethanrom)' |
|
huggingface_link = '[<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">](https://huggingface.co/ethanrom)' |
|
|
|
st.write(github_link + ' ' + huggingface_link, unsafe_allow_html=True) |
|
|
|
def simulate_economy(monthly_individual_income, monthly_individual_expense, start_month, start_year, num_months=12): |
|
income_params = json.loads(monthly_individual_income) |
|
expense_params = json.loads(monthly_individual_expense) |
|
|
|
|
|
np.random.seed(42) |
|
monthly_income = np.random.normal(loc=income_params["mean"], scale=income_params["standarddeviation"], size=num_months) |
|
monthly_income = np.clip(monthly_income, income_params["min"], income_params["max"]) |
|
|
|
monthly_expense = np.random.normal(loc=expense_params["mean"], scale=expense_params["standarddeviation"], size=num_months) |
|
monthly_expense = np.clip(monthly_expense, expense_params["min"], expense_params["max"]) |
|
|
|
total_income_per_year = np.sum(monthly_income) * 12 |
|
average_income_per_year = np.mean(monthly_income) * 12 |
|
|
|
families_beyond_means = np.sum(monthly_income < monthly_expense) |
|
families_paycheck_to_paycheck = np.sum(monthly_income >= monthly_expense) |
|
|
|
return families_beyond_means, families_paycheck_to_paycheck, average_income_per_year, monthly_income, monthly_expense |
|
|
|
def plot_line_chart(data, x_label, y_label, title): |
|
fig = go.Figure() |
|
fig.add_trace(go.Scatter(x=list(range(len(data))), y=data, mode='lines', name=title)) |
|
fig.update_layout(title=title, xaxis_title=x_label, yaxis_title=y_label) |
|
return fig |
|
|
|
def tab2(): |
|
|
|
password_input = st.text_input('Enter Password', type='password') |
|
if authenticate(password_input): |
|
|
|
st.header("User Inputs") |
|
monthly_individual_income = st.text_area("Monthly Individual Income (Python code snippet)", value='''{ |
|
"mean": 4000, |
|
"min": 1200, |
|
"max": 15000, |
|
"standarddeviation": 2000 |
|
}''') |
|
monthly_individual_expense = st.text_area("Monthly Individual Expense (Python code snippet)", value='''{ |
|
"mean": 4000, |
|
"min": 1200, |
|
"max": 15000, |
|
"standarddeviation": 2000 |
|
}''') |
|
start_month = st.selectbox("Start Month", ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']) |
|
start_year = st.number_input("Start Year", min_value=1900, max_value=2100, value=2021) |
|
|
|
if st.button("Run Simulation"): |
|
try: |
|
num_months = 12 |
|
families_beyond_means, families_paycheck_to_paycheck, average_income_per_year, monthly_income, monthly_expense = simulate_economy(monthly_individual_income, monthly_individual_expense, start_month, start_year, num_months) |
|
st.header("Simulation Results") |
|
st.write(f"Number of families living beyond their means: {families_beyond_means}") |
|
st.write(f"Number of families living paycheck to paycheck: {families_paycheck_to_paycheck}") |
|
st.write(f"Average income per year: ${average_income_per_year:.2f}") |
|
|
|
st.header("Monthly Income and Expense") |
|
income_chart = plot_line_chart(monthly_income, "Month", "Income", "Monthly Individual Income") |
|
st.plotly_chart(income_chart) |
|
|
|
expense_chart = plot_line_chart(monthly_expense, "Month", "Expense", "Monthly Individual Expense") |
|
st.plotly_chart(expense_chart) |
|
|
|
st.header("Code Snippets") |
|
st.subheader("Calculation of Number of Families living beyond their means") |
|
st.code(""" |
|
import numpy as np |
|
|
|
# Assuming monthly_income and monthly_expense are numpy arrays |
|
families_beyond_means = np.sum(monthly_income < monthly_expense) |
|
""", language="python") |
|
|
|
st.subheader("Calculation of Number of Families living paycheck to paycheck") |
|
st.code(""" |
|
import numpy as np |
|
|
|
# Assuming monthly_income and monthly_expense are numpy arrays |
|
families_paycheck_to_paycheck = np.sum(monthly_income >= monthly_expense) |
|
""", language="python") |
|
|
|
st.subheader("Calculation of Average income per year") |
|
st.code(f""" |
|
# Assuming monthly_income is a numpy array |
|
average_income_per_year = np.mean(monthly_income) * 12 |
|
""", language="python") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
else: |
|
|
|
st.error('Invalid password. Access denied.') |
|
|
|
|
|
def tab3(): |
|
st.header("Python Plotly Coding Tutor") |
|
|
|
password_input = st.text_input('Enter Password', type='password') |
|
if authenticate(password_input): |
|
|
|
|
|
years = np.arange(2010, 2022) |
|
gdp = [12500, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000] |
|
unemployment_rate = [8.3, 7.9, 7.2, 6.8, 6.1, 5.6, 5.2, 4.8, 4.3, 4.1, 3.9, 3.7] |
|
|
|
st.subheader("Example: GDP over the Years") |
|
st.write("Below is a plot showing the GDP growth over the years.") |
|
|
|
|
|
fig_gdp = go.Figure() |
|
fig_gdp.add_trace(go.Scatter(x=years, y=gdp, mode='lines+markers', name='GDP')) |
|
fig_gdp.update_layout(title='GDP Growth Over the Years', |
|
xaxis_title='Year', |
|
yaxis_title='GDP (Billion USD)') |
|
|
|
|
|
st.write("Python code for GDP plot:") |
|
st.code(""" |
|
# Import necessary libraries |
|
import plotly.graph_objects as go |
|
import numpy as np |
|
|
|
# Sample data for years and GDP |
|
years = np.arange(2010, 2022) |
|
gdp = [12500, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000] |
|
|
|
# Create a Plotly figure object |
|
fig_gdp = go.Figure() |
|
|
|
# Add a line plot for GDP data |
|
fig_gdp.add_trace(go.Scatter(x=years, y=gdp, mode='lines+markers', name='GDP')) |
|
|
|
# Customize the plot layout |
|
fig_gdp.update_layout(title='GDP Growth Over the Years', |
|
xaxis_title='Year', |
|
yaxis_title='GDP (Billion USD)') |
|
|
|
# Display the plot |
|
st.plotly_chart(fig_gdp) |
|
""") |
|
st.write("This code uses the Plotly library to create an interactive line plot showing the GDP growth over the years. First, we import the necessary libraries, including Plotly and NumPy (for generating sample data). Next, we define the data for the years and the corresponding GDP values. We then create a Plotly figure object (`fig_gdp`) and add a line plot to it using the `go.Scatter` function. The plot is customized with a title and axis labels using the `update_layout` method. Finally, we use `st.plotly_chart` to display the plot in the Streamlit app.") |
|
|
|
|
|
st.plotly_chart(fig_gdp) |
|
|
|
st.subheader("Example: Unemployment Rate over the Years") |
|
st.write("Below is a plot showing the unemployment rate over the years.") |
|
|
|
|
|
fig_unemployment = go.Figure() |
|
fig_unemployment.add_trace(go.Scatter(x=years, y=unemployment_rate, mode='lines+markers', name='Unemployment Rate')) |
|
fig_unemployment.update_layout(title='Unemployment Rate Over the Years', |
|
xaxis_title='Year', |
|
yaxis_title='Unemployment Rate (%)') |
|
|
|
|
|
st.write("Python code for Unemployment Rate plot:") |
|
st.code(""" |
|
# Import necessary libraries |
|
import plotly.graph_objects as go |
|
import numpy as np |
|
|
|
# Sample data for years and unemployment rate |
|
years = np.arange(2010, 2022) |
|
unemployment_rate = [8.3, 7.9, 7.2, 6.8, 6.1, 5.6, 5.2, 4.8, 4.3, 4.1, 3.9, 3.7] |
|
|
|
# Create a Plotly figure object |
|
fig_unemployment = go.Figure() |
|
|
|
# Add a line plot for unemployment rate data |
|
fig_unemployment.add_trace(go.Scatter(x=years, y=unemployment_rate, mode='lines+markers', name='Unemployment Rate')) |
|
|
|
# Customize the plot layout |
|
fig_unemployment.update_layout(title='Unemployment Rate Over the Years', |
|
xaxis_title='Year', |
|
yaxis_title='Unemployment Rate (%)') |
|
|
|
# Display the plot |
|
st.plotly_chart(fig_unemployment) |
|
""") |
|
st.write("This code uses the Plotly library to create an interactive line plot showing the unemployment rate over the years. Similar to the previous example, we import the necessary libraries and define the data for the years and the corresponding unemployment rate. We then create a Plotly figure object (`fig_unemployment`) and add a line plot to it using the `go.Scatter` function. The plot is customized with a title and axis labels using the `update_layout` method. Finally, we use `st.plotly_chart` to display the plot in the Streamlit app.") |
|
|
|
|
|
st.plotly_chart(fig_unemployment) |
|
|
|
st.subheader("Try Your Own Plotly Code!") |
|
st.write("You can type in your Plotly code below and click the 'Run Code' button to see your plot.") |
|
|
|
|
|
code_input = st.text_area("Type your Plotly code here:") |
|
|
|
|
|
if st.button("Run Code"): |
|
try: |
|
|
|
exec(code_input) |
|
except Exception as e: |
|
st.error(f"Error: {e}") |
|
|
|
else: |
|
|
|
st.error('Invalid password. Access denied.') |
|
|
|
|
|
def tab4(): |
|
st.header("Customizable Plot with Plotly") |
|
|
|
password_input = st.text_input('Enter Password', type='password') |
|
if authenticate(password_input): |
|
|
|
example_x_values = [2010, 2011, 2012, 2013, 2014, 2015] |
|
example_y_values = [12500, 13000, 14000, 15000, 16000, 17000] |
|
|
|
st.subheader("Customize Your Plot:") |
|
col1, col2 = st.columns([1, 2]) |
|
with col1: |
|
x_axis = st.text_input("Enter X-axis title:", "Years") |
|
y_axis = st.text_input("Enter Y-axis title:", "GDP") |
|
chart_type = st.selectbox("Choose Chart Type:", ["Scatter", "Line", "Bar"]) |
|
line_mode = st.selectbox("Choose Line Mode:", ["lines", "lines+markers", "markers"]) |
|
plot_color = st.color_picker("Choose Plot Color:", "#1f77b4") |
|
with col2: |
|
x_values = st.text_area("Enter X-axis values (comma-separated):", ", ".join(map(str, example_x_values))) |
|
y_values = st.text_area("Enter Y-axis values (comma-separated):", ", ".join(map(str, example_y_values))) |
|
|
|
try: |
|
x_values = [float(x.strip()) for x in x_values.split(",")] |
|
y_values = [float(y.strip()) for y in y_values.split(",")] |
|
except ValueError: |
|
st.error("Invalid input for x or y axis. Please enter valid numeric values.") |
|
|
|
fig_custom = go.Figure() |
|
|
|
if chart_type == "Scatter": |
|
fig_custom.add_trace(go.Scatter(x=x_values, y=y_values, mode=line_mode, name=y_axis, marker_color=plot_color)) |
|
elif chart_type == "Line": |
|
fig_custom.add_trace(go.Line(x=x_values, y=y_values, mode=line_mode, name=y_axis, line_color=plot_color)) |
|
elif chart_type == "Bar": |
|
fig_custom.add_trace(go.Bar(x=x_values, y=y_values, name=y_axis, marker_color=plot_color)) |
|
|
|
fig_custom.update_layout(title=f"{y_axis} vs. {x_axis}", |
|
xaxis_title=x_axis, |
|
yaxis_title=y_axis) |
|
|
|
st.subheader("Customized Plot:") |
|
st.plotly_chart(fig_custom) |
|
|
|
st.subheader("Python Code to Create the Customized Plot:") |
|
code = f""" |
|
import plotly.graph_objects as go |
|
|
|
x_values = {x_values} |
|
y_values = {y_values} |
|
|
|
fig_custom = go.Figure() |
|
""" |
|
|
|
if chart_type == "Scatter": |
|
code += f""" |
|
fig_custom.add_trace(go.Scatter(x=x_values, y=y_values, mode='{line_mode}', name='{y_axis}', marker_color='{plot_color}')) |
|
""" |
|
elif chart_type == "Line": |
|
code += f""" |
|
fig_custom.add_trace(go.Line(x=x_values, y=y_values, mode='{line_mode}', name='{y_axis}', line_color='{plot_color}')) |
|
""" |
|
elif chart_type == "Bar": |
|
code += f""" |
|
fig_custom.add_trace(go.Bar(x=x_values, y=y_values, name='{y_axis}', marker_color='{plot_color}')) |
|
""" |
|
|
|
code += f""" |
|
fig_custom.update_layout(title='{y_axis} vs. {x_axis}', |
|
xaxis_title='{x_axis}', |
|
yaxis_title='{y_axis}') |
|
""" |
|
|
|
st.code(code) |
|
|
|
else: |
|
|
|
st.error('Invalid password. Access denied.') |
|
|
|
def tab5(): |
|
st.header("Building Predictive Models with Plotly") |
|
|
|
password_input = st.text_input('Enter Password', type='password') |
|
if authenticate(password_input): |
|
|
|
np.random.seed(42) |
|
x = np.arange(1, 11) |
|
y = 2 * x + 3 + np.random.randn(10) |
|
|
|
st.subheader("Linear Regression Example:") |
|
st.write("Let's consider a simple linear regression example using the following data:") |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.write("X (Independent Variable):", x) |
|
with col2: |
|
st.write("Y (Dependent Variable):", y) |
|
|
|
fig_data = go.Figure() |
|
fig_data.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Data Points')) |
|
fig_data.update_layout(title='Data Points for Linear Regression', |
|
xaxis_title='X (Independent Variable)', |
|
yaxis_title='Y (Dependent Variable)') |
|
|
|
with col1: |
|
st.plotly_chart(fig_data) |
|
|
|
model = LinearRegression() |
|
x_reshaped = x.reshape(-1, 1) |
|
model.fit(x_reshaped, y) |
|
|
|
st.subheader("Interactivity and Model Adjustment:") |
|
st.write("You can interact with the chart by adjusting the values of the slope and intercept.") |
|
st.write("Changing these parameters will modify the regression line and the predictions.") |
|
st.write("Feel free to experiment and observe how the line fits the data differently.") |
|
|
|
|
|
slope_slider = st.slider("Slope (Coefficient)", min_value=-10.0, max_value=10.0, value=2.0, step=0.1) |
|
intercept_slider = st.slider("Intercept", min_value=-10.0, max_value=10.0, value=3.0, step=0.1) |
|
|
|
|
|
y_pred_adjusted = slope_slider * x + intercept_slider |
|
|
|
fig_regression = go.Figure() |
|
fig_regression.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Data Points')) |
|
fig_regression.add_trace(go.Scatter(x=x, y=y_pred_adjusted, mode='lines', name='Regression Line', line=dict(color='red'))) |
|
fig_regression.update_layout(title='Linear Regression', |
|
xaxis_title='X (Independent Variable)', |
|
yaxis_title='Y (Dependent Variable)') |
|
|
|
st.plotly_chart(fig_regression) |
|
|
|
st.subheader("Interpreting Model Coefficients:") |
|
st.write("The slope of the regression line represents how much Y changes for a one-unit increase in X.") |
|
st.write("The intercept is the value of Y when X is 0. In our example, the intercept is 3.") |
|
st.write("For each unit increase in X, Y increases by the slope you adjusted using the slider.") |
|
|
|
st.subheader("Python Code for Linear Regression:") |
|
code = """ |
|
import numpy as np |
|
from sklearn.linear_model import LinearRegression |
|
|
|
# Sample data for linear regression example |
|
x = np.arange(1, 11) |
|
y = 2 * x + 3 + np.random.randn(10) |
|
|
|
# Perform linear regression and get the predicted values |
|
model = LinearRegression() |
|
x_reshaped = x.reshape(-1, 1) |
|
model.fit(x_reshaped, y) |
|
slope = model.coef_[0] |
|
intercept = model.intercept_ |
|
|
|
# Display the coefficients |
|
print("Slope (Coefficient):", slope) |
|
print("Intercept:", intercept) |
|
""" |
|
st.code(code) |
|
else: |
|
|
|
st.error('Invalid password. Access denied.') |
|
|
|
|
|
def tab6(): |
|
st.header("Auto Plot Generator") |
|
st.markdown("Auto Generate code and plot for a given question") |
|
password_input = st.text_input('Enter Password', type='password') |
|
if authenticate(password_input): |
|
|
|
openai_api_key = st.text_input("Enter your OpenAI API key:", type='password') |
|
|
|
|
|
video_file = "2023-07-22 19-52-10.mp4" |
|
if os.path.exists(video_file): |
|
st.video(video_file) |
|
else: |
|
st.warning("Video file not found.") |
|
|
|
main_question = st.text_area("Enter Information here:", height=400, value=default_text4) |
|
sub_question = st.text_area("Enter question here:", value=default_text5) |
|
|
|
result = None |
|
|
|
if st.button("Generate Code"): |
|
if openai_api_key: |
|
set_openai_api_key(openai_api_key) |
|
with st.spinner('Thinking...'): |
|
result = generate_plot(main_question, sub_question) |
|
st.code(result) |
|
st.session_state.generated_code = result |
|
else: |
|
st.warning("Please enter your OpenAI API key.") |
|
|
|
if st.button("Show Plot"): |
|
if 'generated_code' in st.session_state: |
|
with st.spinner('Generating Plot...'): |
|
exec(st.session_state.generated_code) |
|
else: |
|
st.warning("Please generate the code first.") |
|
|
|
else: |
|
|
|
st.error('Invalid password. Access denied.') |
|
|
|
def main(): |
|
st.set_page_config(page_title="Economic Simulator and Python Coding Tutor", page_icon=":memo:", layout="wide") |
|
tabs = ["Intro", "Simulate", "Learn about plotly usage", "Building custom plots", "Building Predictive Models", "AI Plot Generation"] |
|
|
|
with st.sidebar: |
|
|
|
current_tab = option_menu("Select a Tab", tabs, menu_icon="cast") |
|
|
|
tab_functions = { |
|
"Intro": tab1, |
|
"Simulate": tab2, |
|
"Learn about plotly usage": tab3, |
|
"Building custom plots": tab4, |
|
"Building Predictive Models": tab5, |
|
"AI Plot Generation": tab6, |
|
} |
|
|
|
if current_tab in tab_functions: |
|
tab_functions[current_tab]() |
|
|
|
if __name__ == "__main__": |
|
main() |