ethanlshen's picture
Update superposed/llama/tokenizer.py
c57b12c verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
from logging import getLogger
from typing import List
from sentencepiece import SentencePieceProcessor
logger = getLogger()
class Tokenizer:
"""tokenizing and encoding/decoding text using SentencePiece."""
def __init__(self, model_path: str):
"""
Initializes the Tokenizer with a SentencePiece model.
Args:
model_path (str): The path to the SentencePiece model file.
"""
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
logger.info(f"Reloaded SentencePiece model from {model_path}")
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
logger.info(
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
)
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s, bos: bool, eos: bool):
"""
Encodes a string into a list of token IDs.
Args:
s (str): The input string to be encoded.
bos (bool): Whether to prepend the beginning-of-sequence token.
eos (bool): Whether to append the end-of-sequence token.
Returns:
List[int]: A list of token IDs.
"""
t = self.sp_model.encode(s)
if bos:
for i in range(len(t)):
t[i] = [self.bos_id] + t[i]
if eos:
for i in range(len(t)):
t[i] = t[i] + [self.eos_id]
return t
def decode(self, t):
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
return self.sp_model.decode(t)