Matthias Kleiner commited on
Commit
38b10ba
·
1 Parent(s): 2ef4d5b

try zerospace

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -5,8 +5,8 @@ import datetime
5
  from huggingface_hub import hf_api, CommitScheduler, HfApi
6
  from pathlib import Path
7
 
8
- # deckify_private = "ByMatthew/deckify_private"
9
- deckify_private = "eth-zurich-cle/deckify_private"
10
 
11
  feedback_file = Path("output_data/") / f"output_{uuid.uuid4()}.json"
12
  feedback_folder = feedback_file.parent
@@ -87,7 +87,9 @@ def func(file, number_of_pages, secret):
87
  print(f"Client: {client}")
88
 
89
 
 
90
  output = client.predict(file, number_of_pages)
 
91
  if "Error" in output:
92
  return output
93
  # generate a random sequence of numbers
@@ -130,16 +132,21 @@ description = r"""
130
  3️⃣ <b>Enter the password provided in the invite email.</b><br>
131
  4️⃣ <b>Click the Generate button</b>: Initiate the slide generation process by clicking the designated "Generate" button.<br>
132
  5️⃣ <b>Be patient 🙂</b>: Generating the slides could take between 1 minute and 5 minutes.<br>
133
-
 
 
 
134
 
135
- 🖼️ Some examples of slides generated using <b>SCIDECK</b> are shown below: <br>
136
- 1. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [[Paper]](https://arxiv.org/pdf/1502.03167.pdf) [[Slides]](https://drive.google.com/file/d/1Zt5FFH0nKxut-LyEr9pNAIdtgR_lBtIj/view?usp=sharing) <br>
137
- 2. Attention Is All You Need [[Paper]](https://arxiv.org/pdf/1706.03762.pdf) [[Slides]](https://drive.google.com/file/d/1xKgohh_QKV9pD_XjDuXR566h0VJ1S7WI/view?usp=sharing) <br>
138
- 3. Denoising Diffusion Probabilistic Models [[Paper]](https://arxiv.org/pdf/2006.11239.pdf) [[Slides]](https://drive.google.com/file/d/1D2ZfoJpHR3kP0JdsYyjxUq-vjVMV-KTO/view?usp=sharing) <br>
139
 
 
140
 
141
  ver 0.1
142
  """
 
 
 
 
143
 
144
  read_key = os.environ.get("HF_TOKEN", None)
145
 
 
5
  from huggingface_hub import hf_api, CommitScheduler, HfApi
6
  from pathlib import Path
7
 
8
+ deckify_private = "ByMatthew/deckify_private"
9
+ # deckify_private = "eth-zurich-cle/deckify_private"
10
 
11
  feedback_file = Path("output_data/") / f"output_{uuid.uuid4()}.json"
12
  feedback_folder = feedback_file.parent
 
87
  print(f"Client: {client}")
88
 
89
 
90
+ # output, parsed_document = client.predict(file, number_of_pages)
91
  output = client.predict(file, number_of_pages)
92
+
93
  if "Error" in output:
94
  return output
95
  # generate a random sequence of numbers
 
132
  3️⃣ <b>Enter the password provided in the invite email.</b><br>
133
  4️⃣ <b>Click the Generate button</b>: Initiate the slide generation process by clicking the designated "Generate" button.<br>
134
  5️⃣ <b>Be patient 🙂</b>: Generating the slides could take between 1 minute and 5 minutes.<br>
135
+ 6️⃣ <b>Download the slides</b>: Once the slides are generated, you can download them by clicking the "Copy" button.<br>
136
+ 7️⃣ <b>Feedback</b>: Please fill out the following [[Feedback Form]](https://docs.google.com/forms/d/e/1FAIpQLScFVZJeNSa9L4t8z5B8whzoLvlNpb95bQdroIPID7aNdv0i4w/viewform?fbzx=-3656849655817576014) <br>
137
+
138
+ 📝 If you have any other issues or questions, please do not hesitate to contact us at ..... 🤗 <br>
139
 
140
+ Disclaimer: The uploaded files along with the generated outputs will be stored in order to evaluate and improve the service. <br>
 
 
 
141
 
142
+ Note: If the background process is not running, it may take up to 3 min for it to start. <br>
143
 
144
  ver 0.1
145
  """
146
+ # 🖼️ Some examples of slides generated using <b>SCIDECK</b> are shown below: <br>
147
+ # 1. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [[Paper]](https://arxiv.org/pdf/1502.03167.pdf) [[Slides]](https://drive.google.com/file/d/1Zt5FFH0nKxut-LyEr9pNAIdtgR_lBtIj/view?usp=sharing) <br>
148
+ # 2. Attention Is All You Need [[Paper]](https://arxiv.org/pdf/1706.03762.pdf) [[Slides]](https://drive.google.com/file/d/1xKgohh_QKV9pD_XjDuXR566h0VJ1S7WI/view?usp=sharing) <br>
149
+ # 3. Denoising Diffusion Probabilistic Models [[Paper]](https://arxiv.org/pdf/2006.11239.pdf) [[Slides]](https://drive.google.com/file/d/1D2ZfoJpHR3kP0JdsYyjxUq-vjVMV-KTO/view?usp=sharing) <br>
150
 
151
  read_key = os.environ.get("HF_TOKEN", None)
152