Spaces:
Sleeping
Sleeping
### Imports for Modules ### | |
import gradio as gr | |
import os | |
import torch | |
from typing import Tuple, Dict | |
from timeit import default_timer as timer | |
### Functional Imports | |
from model import getEffNetModel | |
classNames = ['Adenocarcinom','Large cell carcinoma', 'Squamous cell carcinoma', 'Normal'] | |
effNetModel, effNetTransforms = getEffNetModel(42,len(classNames)) | |
effNetModel.load_state_dict(torch.load(f="EffNetModel.pt",map_location=torch.device("cpu"))) | |
def predictionMaker(img): | |
startTime = timer() | |
img = effNetTransforms(img).unsqueeze(0) | |
effNetModel.eval() | |
with torch.inference_mode(): | |
predProbs = torch.softmax(effNetModel(img),dim=1) | |
predDict = {classNames[i]: float(predProbs[0][i]) for i in range(len(classNames))} | |
endTime = timer() | |
predTime = round(endTime-startTime,4) | |
return predDict,predTime | |