SayNoToCancer / app.py
Chaitanya Garg
Complete Project
ef55f93
raw
history blame
1.1 kB
### Imports for Modules ###
import gradio as gr
import os
import torch
from typing import Tuple, Dict
from timeit import default_timer as timer
### Functional Imports
from predictor import predictionMaker
exampleList = [["examples/" + example] for example in os.listdir("examples")]
title = "Detect Chest Cancer early for a Safe tommorrow"
description = "An EfficientNetB2 feature extractor computer vision model to classify CT scan images into chest cancer types(adenocarcinoma,large cell carcinoma,squamous cell carcinoma) or normal condition ."
article = "Created by [Eternal Bliassard](https://github.com/EternalBlissard)."
# Create the Gradio demo
demo = gr.Interface(fn=predictionMaker,
inputs=[gr.Image(type="pil")],
outputs=[gr.Label(num_top_classes=2, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=exampleList,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch()