|
import gradio as gr |
|
from transformers import pipeline, BertTokenizer, BertForSequenceClassification |
|
import os |
|
import pickle |
|
import pandas as pd |
|
from service_dops_api.dops_config import ServiceDopsConfig |
|
from service_dops_api.dops_classifier import DopsClassifier |
|
import json |
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
tokenizer_cat = BertTokenizer.from_pretrained("etadevosyan/service_categorizer_v2", |
|
token=HF_TOKEN) |
|
model_cat = BertForSequenceClassification.from_pretrained('etadevosyan/service_categorizer_v2',token=HF_TOKEN) |
|
|
|
clf_cat = pipeline("text-classification", model=model_cat, tokenizer=tokenizer_cat) |
|
|
|
|
|
tokenizer_spec = BertTokenizer.from_pretrained("etadevosyan/specialists_categorizer_model", |
|
token=HF_TOKEN) |
|
model_spec = BertForSequenceClassification.from_pretrained('etadevosyan/specialists_categorizer_model',token=HF_TOKEN) |
|
|
|
clf_spec = pipeline("text-classification", model=model_spec, tokenizer=tokenizer_spec) |
|
|
|
id2label_spec = pd.read_pickle('id2label_spec_categoriser.pickle') |
|
def categoriser_predict(input_text): |
|
predictions = clf_cat(input_text) |
|
text_label = predictions[0]['label'] |
|
return text_label |
|
def doctor_spec_predict(input_text): |
|
predictions = clf_spec(input_text) |
|
numeric_label = int(predictions[0]['label'].split("_")[1]) |
|
text_label = id2label_spec[numeric_label] |
|
return text_label |
|
def dops_predict(input_text): |
|
cfg = ServiceDopsConfig() |
|
model = DopsClassifier(config=cfg) |
|
result = model.run_all_dops(input_text) |
|
return result |
|
def convert_dops_to_dif_fields(dops_result): |
|
dops_values = [] |
|
for dop in dops_result: |
|
temp_values = ','.join(dop['values']) |
|
dops_values.append(temp_values) |
|
return dops_values |
|
def service_pipeline(input_text): |
|
categoriser_result = categoriser_predict(input_text) |
|
if categoriser_result!='Консультация специалиста': |
|
return 'Эта услуга не относится к приему специалиста','-','-','-','-','-','-' |
|
else: |
|
doctor_spec_result = doctor_spec_predict(input_text) |
|
dops_result = dops_predict(input_text) |
|
dops_values = convert_dops_to_dif_fields(dops_result) |
|
return categoriser_result,doctor_spec_result,dops_values[0],dops_values[1],dops_values[2],dops_values[3],dops_values[4] |
|
demo = gr.Interface(fn=service_pipeline,inputs=gr.components.Textbox(label='Название услуги'), |
|
outputs=[gr.components.Textbox(label='Относится ли данная услуга к приёму специалиста'), |
|
gr.components.Textbox(label='Специальность врача'), |
|
gr.components.Textbox(label='Место оказания услуги'), |
|
gr.components.Textbox(label='Учёная степень'), |
|
gr.components.Textbox(label='Возрастная категория'), |
|
gr.components.Textbox(label='Вид приёма'), |
|
gr.components.Textbox(label='Расстояние в км от М(КАД)')], |
|
examples=[ |
|
['Врач-офтальмолог (высшая категория/кандидат медицинских наук), первичный приём'], |
|
['Прием (осмотр, консультация) - врача -оториноларинголога Первичный, рекомендации'], |
|
['Прием врача специалиста ЛОР'], |
|
['Прием (осмотр, консультация) врача-терапевта на дому, повторный (в пределах 5 км от М(КАД)/административной границы города)']]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |