Spaces:
Running
Running
| from dataclasses import dataclass | |
| from typing import List, Tuple, Dict | |
| import os | |
| import re | |
| import httpx | |
| import json | |
| from openai import OpenAI | |
| import edge_tts | |
| import tempfile | |
| import wave | |
| from pydub import AudioSegment | |
| import base64 | |
| from pathlib import Path | |
| class ConversationConfig: | |
| max_words: int = 3000 | |
| prefix_url: str = "https://r.jina.ai/" | |
| model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" | |
| class URLToAudioConverter: | |
| def __init__(self, config: ConversationConfig, llm_api_key: str): | |
| self.config = config | |
| self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1") | |
| self.llm_out = None | |
| def fetch_text(self, url: str) -> str: | |
| if not url: | |
| raise ValueError("URL cannot be empty") | |
| full_url = f"{self.config.prefix_url}{url}" | |
| try: | |
| response = httpx.get(full_url, timeout=60.0) | |
| response.raise_for_status() | |
| return response.text | |
| except httpx.HTTPError as e: | |
| raise RuntimeError(f"Failed to fetch URL: {e}") | |
| def extract_conversation(self, text: str) -> Dict: | |
| if not text: | |
| raise ValueError("Input text cannot be empty") | |
| try: | |
| chat_completion = self.llm_client.chat.completions.create( | |
| messages=[{"role": "user", "content": self._build_prompt(text)}], | |
| model=self.config.model_name, | |
| ) | |
| pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}" | |
| json_match = re.search(pattern, chat_completion.choices[0].message.content) | |
| if not json_match: | |
| raise ValueError("No valid JSON found in response") | |
| return json.loads(json_match.group()) | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to extract conversation: {e}") | |
| def _build_prompt(self, text: str) -> str: | |
| template = """ | |
| { | |
| "conversation": [ | |
| {"speaker": "", "text": ""}, | |
| {"speaker": "", "text": ""} | |
| ] | |
| } | |
| """ | |
| return ( | |
| f"{text}\nConvert the provided text into a short informative and crisp " | |
| f"podcast conversation between two experts. The tone should be " | |
| f"professional and engaging. Please adhere to the following " | |
| f"format and return the conversation in JSON:\n{template}" | |
| ) | |
| async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]: | |
| output_dir = Path(self._create_output_directory()) | |
| filenames = [] | |
| try: | |
| for i, turn in enumerate(conversation_json["conversation"]): | |
| filename = output_dir / f"output_{i}.wav" | |
| voice = voice_1 if i % 2 == 0 else voice_2 | |
| tmp_path, error = await self._generate_audio(turn["text"], voice) | |
| if error: | |
| raise RuntimeError(f"Text-to-speech failed: {error}") | |
| os.rename(tmp_path, filename) | |
| filenames.append(str(filename)) | |
| return filenames, str(output_dir) | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to convert text to speech: {e}") | |
| async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]: | |
| if not text.strip(): | |
| return None, "Text cannot be empty" | |
| if not voice: | |
| return None, "Voice cannot be empty" | |
| voice_short_name = voice.split(" - ")[0] | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
| tmp_path = tmp_file.name | |
| await communicate.save(tmp_path) | |
| return tmp_path, None | |
| def _create_output_directory(self) -> str: | |
| random_bytes = os.urandom(8) | |
| folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8") | |
| os.makedirs(folder_name, exist_ok=True) | |
| return folder_name | |
| def combine_audio_files(self, filenames: List[str], output_file: str) -> None: | |
| if not filenames: | |
| raise ValueError("No input files provided") | |
| try: | |
| audio_segments = [] | |
| for filename in filenames: | |
| audio_segment = AudioSegment.from_mp3(filename) | |
| audio_segments.append(audio_segment) | |
| combined = sum(audio_segments) | |
| combined.export(output_file, format="wav") | |
| for filename in filenames: | |
| os.remove(filename) | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to combine audio files: {e}") | |
| async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> str: | |
| text = self.fetch_text(url) | |
| words = text.split() | |
| if len(words) > self.config.max_words: | |
| text = " ".join(words[: self.config.max_words]) | |
| conversation_json = self.extract_conversation(text) | |
| conversation_text = "\n".join( | |
| f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] | |
| ) | |
| self.llm_out = conversation_json | |
| audio_files, folder_name = await self.text_to_speech( | |
| conversation_json, voice_1, voice_2 | |
| ) | |
| final_output = os.path.join(folder_name, "combined_output.wav") | |
| self.combine_audio_files(audio_files, final_output) | |
| return final_output,conversation_text |