Podcastify / conver.py
eswardivi's picture
Update conver.py
63ea22a verified
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import re
import httpx
import json
from openai import OpenAI
import edge_tts
import tempfile
import wave
from pydub import AudioSegment
import base64
from pathlib import Path
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": self._build_prompt(text)}],
model=self.config.model_name,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def _build_prompt(self, text: str) -> str:
template = """
{
"conversation": [
{"speaker": "", "text": ""},
{"speaker": "", "text": ""}
]
}
"""
return (
f"{text}\nConvert the provided text into a short informative and crisp "
f"podcast conversation between two experts. The tone should be "
f"professional and engaging. Please adhere to the following "
f"format and return the conversation in JSON:\n{template}"
)
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voice_1 if i % 2 == 0 else voice_2
tmp_path, error = await self._generate_audio(turn["text"], voice)
if error:
raise RuntimeError(f"Text-to-speech failed: {error}")
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
if not text.strip():
return None, "Text cannot be empty"
if not voice:
return None, "Voice cannot be empty"
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def _create_output_directory(self) -> str:
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
if not filenames:
raise ValueError("No input files provided")
try:
audio_segments = []
for filename in filenames:
audio_segment = AudioSegment.from_mp3(filename)
audio_segments.append(audio_segment)
combined = sum(audio_segments)
combined.export(output_file, format="wav")
for filename in filenames:
os.remove(filename)
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> str:
text = self.fetch_text(url)
words = text.split()
if len(words) > self.config.max_words:
text = " ".join(words[: self.config.max_words])
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
)
self.llm_out = conversation_json
audio_files, folder_name = await self.text_to_speech(
conversation_json, voice_1, voice_2
)
final_output = os.path.join(folder_name, "combined_output.wav")
self.combine_audio_files(audio_files, final_output)
return final_output,conversation_text