Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
import os | |
from threading import Thread | |
import spaces | |
import time | |
token = os.environ["HF_TOKEN"] | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
model = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-7b-it", | |
quantization_config=quantization_config, | |
token=token) | |
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token) | |
if torch.cuda.is_available(): | |
device = torch.device('cuda') | |
print(f"Using GPU: {torch.cuda.get_device_name(device)}") | |
else: | |
device = torch.device('cpu') | |
print("Using CPU") | |
model = model.to(device) | |
model = model.to_bettertransformer() | |
def chat(message, history): | |
start_time = time.time() | |
chat = [] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=0.75, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
first_token_time = None | |
for new_text in streamer: | |
if not first_token_time: | |
first_token_time = time.time() - start_time | |
partial_text += new_text | |
yield partial_text | |
total_time = time.time() - start_time | |
tokens = len(tok.tokenize(partial_text)) | |
tokens_per_second = tokens / total_time if total_time > 0 else 0 | |
# Append the timing information to the final output | |
timing_info = f"\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}" | |
yield partial_text + timing_info | |
demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="Chat With LLMS") | |
demo.launch() | |