ktp-data-extraction / ktp_reader.py
esraa-abdelmaksoud's picture
Update ktp_reader.py
170e723
from paddleocr import PaddleOCR
import os
import cv2
import pytesseract
import pandas as pd
import re
from thefuzz import fuzz
from thefuzz import process
import logging
import json
logging.getLogger().setLevel(logging.ERROR)
def process_image(path):
"""
The main function that performs optical character recognition (OCR) on an image and processes the extracted data.
Returns:
obj: Processed text output containing extracted information.
"""
csv_path = 'data.csv'
data_dict = {
"provinsi": "",
"kabupaten": "",
"nik": "",
"nama": "",
"tempat/tgl lahir": "",
"jenis kelamin": "",
"gol. darah": "",
"alamat": "",
"rt/rw": "",
"kel/desa": "",
"kecamatan": "",
"agama": "",
"status perkawinan": "",
"pekerjaan": "",
"kewarganegaraan": "",
"berlaku hingga": "",
}
# Create list for labels spelling correction
labels = list(data_dict.keys())
labels.remove("kabupaten")
try:
# Read csv data file
df = pd.read_csv(csv_path)
except:
raise ValueError("Cannot find the csv data file.")
try:
# Resize image
image = resize_image(path)
# Run Tesseract to get the right rotation and color conversion
image_xyz = rotate_image(image)
except:
raise ValueError("Invalid image input.")
# Run PaddleOCR on the whole image and Tesseract on detected areas by PaddleOCR
all_data = run_ocr(image_xyz)
# Check if the 16-digit ID number exists
all_data = check_numbers(all_data)
# Split labels and data
new_data = split_items(all_data)
try:
# Correct the text of labels
new_data, found_labels = correct_labels(new_data, labels)
# Correct the data
new_data = correct_data(new_data, df)
except:
pass
try:
# Add labels if missing
new_data = add_missing_labels(new_data, labels, found_labels)
except:
pass
# Print the clean output
text = print_output(new_data)
# Convert to JSON
text_obj = json.dumps({"text":text})
return text_obj
def get_scores(result):
"""
Get scores from the OCR result.
Args:
result (list): The OCR result list.
Returns:
tuple: A tuple containing lists of sorted confidence scores, overall score, and all scores.
"""
scores = [round(line[1][1],4) for line in result[0]]
overall_score = 0
for score in scores:
overall_score += score
overall_score = round(overall_score/len(scores),4)
sorted_scores = sorted(scores)
# Raise error if the 3rd confidence score is less than 90%
if sorted_scores[2] < 0.9:
raise ValueError("Poor image quality. Please avoid shadows, flashlights, and patterned backgrounds.")
return overall_score, sorted_scores, scores
def add_missing_labels(new_data, labels, found_labels):
# Add labels if a maximum of 3 labels is missing
if len(found_labels) < 15 and len(found_labels) > 12:
added = 0
for i in range(len(labels)):
if labels[i] != found_labels[i][0]:
# Use next label index - 2 + the number of shifted items
# Else, use previous label index + 2 + the number of shifted items
try:
if labels[i] == "gol. darah":
idx = found_labels[i][1] + added
elif labels[i] == "alamat":
# Get Gol. Darah index and check if the length of next item is greater than two
gol_idx = new_data.index("gol. darah")
if len(new_data[gol_idx+1]) > 2:
idx = gol_idx + 1
else:
idx = gol_idx + 2
else:
idx = found_labels[i+1][1] - 2 + added
except:
idx = found_labels[i-1][1] + 2 + added
if idx < len(new_data)-1:
new_data.insert(idx, [labels[i], labels[i], 'label'])
found_labels.insert(i, [labels[i], idx])
else:
new_data.insert(len(new_data)-2, [labels[i], labels[i], 'label'])
found_labels.insert(i, [labels[i], len(new_data)-2])
added += 1
else:
raise ValueError("Some labels cannot be detected. Please recapture a photo of the ID.")
return new_data
def check_numbers(all_data):
"""
Check if there is a 16-digit number in OCR text.
Args:
all_data (list): The structured OCR result list.
Returns:
list: A list containing the structured OCR output
"""
ktp_num = ""
for i in range(len(all_data)):
id_output = re.findall("\d{16}", all_data[i][4])
rt_output = re.findall("\d{3}/\d{3}", all_data[i][4])
if len(id_output) > 0:
# Keep PaddleOCR output for both
ktp_num, all_data[i][4], all_data[i][5] = id_output[0], id_output[0], id_output[0]
if len(rt_output) > 0:
all_data[i][4], all_data[i][5] = rt_output[0], rt_output[0]
if ktp_num == "":
raise ValueError("KTP number cannot be detected. Please recapture a photo of the ID.")
return all_data
def run_ocr(image):
"""
Perform optical character recognition (OCR) on the given image.
Args:
image (ndarray): The image array on which OCR will be performed.
Returns:
list: A list containing information about the recognized text regions, including coordinates, recognized text,
and corresponding OCR outputs from different OCR engines.
"""
ocr = PaddleOCR(
use_angle_cls=True,
lang="id",
det_max_side_len=1500,
det_limit_type="min",
det_db_unclip_ratio=1.7,
drop_score = 0.75,
show_log=False,
)
result = ocr.ocr(image, cls=True)
all_data = []
# Check the if the confidence score is higher than the threshold
get_scores(result)
# Create a list of values in form of x1, y1, x2, y2, Paddle output, Tesseract output
for i, res in enumerate(result[0]):
x, y = [], []
paddle_text = res[1][0]
for i in range(4):
x.append(res[0][i][0])
y.append(res[0][i][1])
x1, y1, x2, y2 = int(min(x)), int(min(y)), int(max(x)), int(max(y))
# Crop the area of text detected by Paddle
snip = image[y1:y2, x1:x2]
# Run Tesseract on the cropped area
tess_text = pytesseract.image_to_string(snip, lang="ind+eng", config="--psm 6")
# Clean the output of Tesseract and Paddle
tess_text, paddle_text = clean_text(tess_text, paddle_text)
all_data.append([x1, y1, x2, y2, paddle_text, tess_text])
return all_data
def clean_text(tess_text, paddle_text):
"""
Clean and preprocess the recognized text from Tesseract and PaddleOCR.
Args:
tess_text (str): Text recognized by Tesseract OCR.
paddle_text (str): Text recognized by PaddleOCR.
Returns:
tuple: A tuple containing the cleaned and preprocessed text from Tesseract and PaddleOCR, respectively.
"""
# Remove unicode
if "\n" in tess_text or "\x0c" in tess_text:
tess_text = tess_text.replace("\n", "")
tess_text = tess_text.replace("\x0c", "")
# Remove space before or after colon and hyphen
pattern = r"\s*([-:*])\s*"
paddle_text = re.sub(pattern, r"\1", paddle_text)
tess_text = re.sub(pattern, r"\1", tess_text)
# Replace any 1O with 10
paddle_text = paddle_text.replace("1O","10")
tess_text = tess_text.replace("1O","10")
# Fix dots in ID number
pattern = r"[0-9\.]{10}"
res = re.findall(pattern, paddle_text)
if len(res) != 0:
paddle_text = paddle_text.replace(".","")
# Add space after dot or comma and remove any two spaces
paddle_text = re.sub(r"([A-Z]\.)([A-z])", r"\1 \2", paddle_text)
# Fix commas recognized as dots and add space after it
if "NO" not in paddle_text:
pattern = r"([A-Za-z][\.,]\s{0,1})(\d{2})"
paddle_text = re.sub(pattern, r", \2", paddle_text)
tess_text = re.sub(pattern, r", \2", tess_text)
else:
pattern = r"([A-Za-z][\.]\s{0,1})(\d{1})"
paddle_text = re.sub(pattern, r". \2", paddle_text)
tess_text = re.sub(pattern, r". \2", tess_text)
# Clean blood group
if "Darah" in tess_text or "Darah" in paddle_text:
tess_text = tess_text.replace("0", "O")
paddle_text = paddle_text.replace("0", "O")
# Clean symbols
for item in ["'", '"', "!", "‘", "“", ":", "*","=", "+"]:
paddle_text = paddle_text.replace(item, "")
tess_text = tess_text.replace(item, "")
# Remove hyphen, dot, or comma if in the beginning of the text
if len(tess_text) > 0:
if tess_text[0] in ['-','.',',']:
tess_text = tess_text[1:]
if len(paddle_text) > 0:
if paddle_text[0] in ['-','.',',']:
paddle_text = paddle_text[1:]
# if paddle text is similar to tesseract text without spaces, replace paddle text with tesseract text
temp = tess_text.replace(" ","")
if paddle_text == temp:
paddle_text = tess_text
# If JL in the beggining of text, add the dot
if paddle_text[:2] == "JL" or tess_text[:2] == "JL":
paddle_text = re.sub(r"(JL)(\.{0,1})([A-Z])",r"JL. \3", paddle_text)
tess_text = re.sub(r"(JL)(\.{0,1})([A-Z])",r"JL. \3", tess_text)
# Check add missing spaces to Paddle Output
idxs = []
for i, char in enumerate(tess_text):
if char.isspace():
idxs.append(i)
for idx in idxs:
try:
p1 = tess_text[idx-2:idx]
p2 = tess_text[idx+1:idx+3]
if p1.isalpha() == True and p2.isalpha() == True:
to_replace = p1+p2
new = p1+" "+p2
paddle_text = paddle_text.replace(to_replace, new)
except:
pass
return tess_text, paddle_text
def resize_image(path):
"""
Resize the image if its dimensions are smaller than the specified threshold.
Args:
path (str): The path to the image file.
Returns:
ndarray: The resized image array.
"""
img = cv2.imread(path)
width = int(img.shape[1])
height = int(img.shape[0])
thresh = 1500
# Resize image to match the threshold
if width < thresh and height < thresh:
if width > height:
percent = thresh // width
else:
percent = thresh // height
dim = (width * percent, height * percent)
img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
return img
def rotate_image(image):
"""
Rotate the image to the correct orientation by checking for specific text patterns in different rotations.
Args:
image (ndarray): The image array to be rotated.
Returns:
ndarray: The rotated image array if specific text patterns are found, otherwise the original image array.
"""
# Convert color to XYZ
image_xyz = cv2.cvtColor(image, cv2.COLOR_BGR2XYZ)
# Rotate the image by 90 degrees for 4 times until recognizing some correct text
for i in range(4):
text = pytesseract.image_to_string(image_xyz, lang="ind+eng", config="--psm 6")
if "PROVINSI" in text or "Darah" in text or "NIK" in text:
return image_xyz
else:
image_xyz = cv2.rotate(image_xyz, cv2.ROTATE_90_CLOCKWISE)
# If text is not found until last round, return image in original rotation
if i == 3:
return image_xyz
def correct_labels(new_data, labels):
"""
Correct the labels of the extracted data by matching them with a list of valid labels.
Args:
new_data (list): The extracted data list to be corrected.
labels (list): The list of valid labels.
Returns:
tuple: The corrected extracted data list with updated labels and list of labels
and corresponding indexes.
"""
thresh = 75
found_labels = [["provinsi", 0]]
for i in range(len(new_data)):
paddle_fuzz = process.extractOne(new_data[i][0], labels, scorer=fuzz.ratio)
tess_fuzz = process.extractOne(new_data[i][1], labels, scorer=fuzz.ratio)
# Skip adding provinsi because it's already added at index 0
if paddle_fuzz[0] != 'provinsi' and tess_fuzz[0] != 'provinsi':
# Correct text using the match that is more than the threshold
if paddle_fuzz[1] >= thresh:
new_data[i][0] = paddle_fuzz[0]
new_data[i][1] = paddle_fuzz[0]
new_data[i].append("label")
found_labels.append([paddle_fuzz[0], i])
elif tess_fuzz[1] >= thresh:
new_data[i][0] = tess_fuzz[0]
new_data[i][1] = tess_fuzz[0]
new_data[i].append("label")
found_labels.append([tess_fuzz[0], i])
# Correct "NIK"
elif (len(new_data[i][0]) == 3 or len(new_data[i][1]) == 3) and (
"IK" == new_data[i][0] or "IK" in new_data[i][1]
):
new_data[i][0] = "nik"
new_data[i][1] = "nik"
new_data[i].append("label")
found_labels.append(["nik", i])
return new_data, found_labels
def find_uppercase_index(text):
"""
Find the index of the first uppercase word in the given text.
Args:
text (str): The input text.
Returns:
int: The index of the first uppercase word, or -1 if no uppercase word is found.
"""
# Split lowercase followed by uppercase without space
pattern = r"(?<![A-Z])[A-Z]{3,}"
match = re.search(pattern, text)
if match:
return match.start()
else:
return -1
def correct_data(new_data, df):
"""
Correct the extracted data based on reference data from a DataFrame.
Args:
new_data (list): The extracted data list to be corrected.
df (DataFrame): The reference DataFrame containing the data for correction.
Returns:
list: The corrected extracted data list.
"""
# Make lists to be used in text correction
provinsi_df = df["provinsi"].dropna().tolist()
provinsi = [f"PROVINSI {item}" for item in provinsi_df]
other_vals = [
"LAKI-LAKI",
"PEREMPUAN",
"A",
"B",
"AB",
"O",
"ISLAM",
"KRISTEN",
"KATOLIK",
"HINDU",
"BUDHA",
"KONGHUCU",
"BELUM KAWIN",
"KAWIN",
"CERAI HIDUP",
"CERAI MATI",
"WNI",
"WNA",
"SEUMUR HIDUP",
]
paddle_except_city = []
for i in range(len(new_data)):
# Fix Provinsi
if i == 0 or ("PROVINSI" in new_data[i][0] or "PROVINSI" in new_data[i][1]):
new_data[i][0], new_data[i][1] = replace_data(new_data, i, provinsi)
kabupaten = df[new_data[i][0].replace("PROVINSI ", "")].dropna().tolist()
# Fix Kabupaten
elif i == 1:
try:
new_data[i][0], new_data[i][1] = replace_data(new_data, i, kabupaten)
except:
pass
# Fix other values such as religion
elif len(new_data[i]) == 2:
new_data[i][0], new_data[i][1] = replace_data(new_data, i, other_vals)
# Fix NIK
elif i == 3 or new_data[i - 1][0].upper() == "NIK":
new_data[i][1] = new_data[i][0]
# Fix dates
if i > 4:
pattern = r"(\d{2})\W{0,1}(\d{2})\W{0,1}((19|20)\d{2})"
new_data[i][0] = re.sub(pattern, r"\1-\2-\3", new_data[i][0])
new_data[i][1] = re.sub(pattern, r"\1-\2-\3", new_data[i][1])
if i != 1:
paddle_except_city.append(new_data[i][0])
# Add WNI if no WNI or WNA
paddle_temp = [data[0] for data in new_data]
tess_temp = [data[1] for data in new_data]
if not {"WNI", "WNA"}.intersection(set(paddle_temp)) and not {"WNI", "WNA"}.intersection(set(tess_temp)):
try:
kew_idx = paddle_temp.index("kewarganegaraan")
new_data.insert(kew_idx+1, ["WNI", "WNI"])
except:
pass
# Fix issuer province name if similar to province name in line 2
issuer_fuzz = process.extractOne(new_data[1][0], paddle_except_city, scorer=fuzz.ratio)
if issuer_fuzz[1] >= 85:
for i in range(len(new_data)):
if new_data[i][0] == issuer_fuzz[0]:
new_data[i][0], new_data[i][1] = new_data[1][0], new_data[1][0]
return new_data
def replace_data(new_data, i, options_list):
"""
Replace the data in the extracted list with the closest matching option from the given list.
Args:
new_data (list): The extracted data list.
i (int): The index of the item to be replaced.
options_list (list): The list of options for replacement.
Returns:
tuple: A tuple containing the replaced values for the item at index i.
"""
paddle_fuzz = process.extractOne(new_data[i][0], options_list, scorer=fuzz.ratio)
tess_fuzz = process.extractOne(new_data[i][1], options_list, scorer=fuzz.ratio)
# Replace values if fuzzy matching score exceeds threshold
if len(new_data[i][0]) < 4:
thresh = 65
else:
thresh = 75
if paddle_fuzz[1] > thresh:
new_data[i][0] = paddle_fuzz[0]
new_data[i][1] = paddle_fuzz[0]
elif tess_fuzz[1] > thresh:
new_data[i][0] = tess_fuzz[0]
new_data[i][1] = tess_fuzz[0]
return new_data[i][0], new_data[i][1]
def split_items(all_data):
"""
Split the data items in the given list into separate items based on certain conditions.
Args:
all_data (list): The list of data items to be split.
Returns:
list: The new list of split data items.
"""
new_data = []
for i in range(len(all_data)):
paddle_idx = find_uppercase_index(all_data[i][4])
tess_idx = find_uppercase_index(all_data[i][5])
if paddle_idx not in [0, -1] and tess_idx not in [0, -1]:
p1 = [all_data[i][4][:paddle_idx].strip(), all_data[i][5][:tess_idx].strip()]
p2 = [all_data[i][4][paddle_idx:].strip(), all_data[i][5][tess_idx:].strip()]
if p1 != ["",""]:
new_data.append(p1)
if p2 != ["",""]:
new_data.append(p2)
# Fix the text related to blood type
elif "Darah" in all_data[i][4] or "Darah" in all_data[i][5]:
# Add space between blood type and label
darah_match_1 = re.sub(r"(Darah)\W*((A|AB|B|O))", r"\1 \2", all_data[i][4])
darah_match_2 = re.sub(r"(Darah)\W*((A|AB|B|O))", r"\1 \2", all_data[i][5])
# Locate the space
space_1 = darah_match_1.rfind(" ")
space_2 = darah_match_2.rfind(" ")
# Write the label and values in two seperate lists
try:
if darah_match_1[-1] in ["A", "B", "O"]:
new_data.append(
[darah_match_1[:space_1].strip(), darah_match_1[:space_1].strip()]
)
new_data.append(
[
darah_match_1[space_1 + 1 :].strip(),
darah_match_1[space_1 + 1 :].strip(),
]
)
elif darah_match_2[-1] in ["A", "B", "O"]:
new_data.append(
[darah_match_2[:space_2].strip(), darah_match_2[:space_2].strip()]
)
new_data.append(
[
darah_match_2[space_2 + 1 :].strip(),
darah_match_2[space_2 + 1 :].strip(),
]
)
except:
pass
else:
new_data.append([all_data[i][4].strip(), all_data[i][5].strip()])
return new_data
def print_output(new_data):
"""
Create a formatted string output based on the given data.
Args:
new_data (list): The list of data items.
Returns:
str: The formatted string output.
"""
text = ""
for i in range(len(new_data)):
# Change labels to Uppercase
if new_data[i][0] == new_data[i][1] and len(new_data[i]) == 3:
text += f"{new_data[i][0].upper()}\n"
else:
if len(new_data[i][0]) > 0:
text += f"{new_data[i][0]}\n"
return text