Spaces:
Running
Running
""" | |
中文数据:clue superclue | |
英文数据:glue cnn_dailymail gigaword | |
代码数据: | |
数字: | |
""" | |
import json | |
import os | |
import sys | |
import pandas as pd | |
from datasets import load_dataset | |
from utils.log_util import logger | |
from vocab import load_tokener | |
from vocab import all_tokenizers | |
from typing import List, Optional, Union, Literal | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
common_units = ["g_bytes/b_tokens", "b_tokens/g_bytes", "t_bytes/t_tokens", "t_tokens/t_bytes", "n_chars/n_tokens", ] | |
common_corpuses = sorted(["cc100-en", "cc100-zh-Hans", "cc100-es", "cc100-fr", "cc100-de", "cc100-ko", | |
"cc100-fa", "cc100-ar", "cc100-ja"]) | |
VALID_CODES_CC100 = [ | |
"am", "ar", "as", "az", "be", "bg", "bn", "bn_rom", "br", "bs", "ca", "cs", "cy", "da", "de", | |
"el", "en", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu", | |
"ha", "he", "hi", "hi_rom", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", | |
"kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml", | |
"mn", "mr", "ms", "my", "my_zaw", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt", | |
"qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", | |
"sw", "ta", "ta_rom", "te", "te_rom", "th", "tl", "tn", "tr", "ug", "uk", "ur", "ur_rom", "uz", | |
"vi", "wo", "xh", "yi", "yo", "zh-Hans", "zh-Hant", "zu", | |
] | |
# code: https://huggingface.co/datasets/codeparrot/github-code-clean python java c sql html | |
# math: | |
def get_n_bytes_of_string(string_text): | |
n_bytes = len(string_text.encode("utf-8")) | |
return n_bytes | |
def unit_convertor(stat, unit): | |
n_tokens = stat["n_tokens"] | |
n_chars = stat["n_chars"] | |
n_bytes = stat["n_bytes"] | |
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000) | |
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000) | |
n_bytes_in_mb = n_bytes / (1024 * 1024) | |
n_bytes_in_gb = n_bytes_in_mb / 1024 | |
n_bytes_in_tb = n_bytes_in_gb / 1024 | |
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000) | |
if unit == "n_tokens/n_bytes": | |
value = n_tokens / n_bytes | |
# the average number of characters per token | |
elif unit in ["n_chars/n_tokens", "chars_per_token"]: # 重要:平均一个token包含多少个字符。 | |
value = n_chars / n_tokens | |
elif unit == "n_tokens/n_chars": # 一个中文汉字需要几个token? | |
value = n_tokens / n_chars | |
elif unit == "g_bytes/b_tokens": | |
value = n_bytes_in_gb / n_tokens_in_billion | |
elif unit == "b_tokens/g_bytes": | |
value = n_tokens_in_billion / n_bytes_in_gb | |
elif unit == "t_bytes/t_tokens": # 重要: | |
value = n_bytes_in_tb / n_tokens_in_trillion | |
elif unit == "t_tokens/t_bytes": | |
value = n_tokens_in_trillion / n_bytes_in_tb | |
else: | |
raise "measure not support" | |
return round(value, 3) | |
def to_dataframe(stats, units=None): | |
if units is None: | |
units = common_units | |
elif not isinstance(units, list): | |
units = [units] | |
table = [] | |
for tokenizer_name, stat in stats.items(): | |
columns = {"tokenizer": tokenizer_name, "vocab_size": stat["vocab_size"]} | |
for unit in units: | |
if unit not in stat: | |
columns[unit] = unit_convertor(stat, unit) | |
else: | |
logger.error(f"unit {unit} not support") | |
table.append(columns) | |
df = pd.DataFrame(table) | |
return df | |
cache = {} | |
def tokenize_corpus( | |
tokenizer_name: str, | |
corpuses: List[str], | |
cache_path: str = "stats/compress_rate.json" | |
) -> dict: | |
""" | |
这个要独立的cache,因为速度慢。 | |
:param tokenizer_name: | |
:param corpuses: | |
:param cache_path: | |
:return: | |
""" | |
def _tokenize(tokenizer, datasets): | |
n_tokens = 0 | |
n_chars = 0 | |
n_bytes = 0 | |
for dataset in datasets: | |
for item in dataset: | |
text = item["text"] | |
n_bytes += get_n_bytes_of_string(text) | |
n_chars += len(text) | |
encodings = tokenizer.encode(text) | |
n_tokens += len(encodings) | |
stat = { | |
# "vocab_size": len(tokenizer.vocab_size, | |
"vocab_size": len(tokenizer), | |
"n_bytes": n_bytes, | |
"n_tokens": n_tokens, | |
"n_chars": n_chars, | |
} | |
return stat | |
# load from cache | |
cache_id = f"{tokenizer_name}.{'.'.join(corpuses)}" | |
if not cache and os.path.exists(cache_path): | |
with open(cache_path, "r", encoding="utf-8") as f_tmp: | |
cache.update(json.load(f_tmp)) | |
if cache_id in cache: | |
logger.info(f"loading {cache_id} from in-memory cache") | |
return cache[cache_id] | |
# tokenize corpus | |
tokenizer = load_tokener(tokenizer_name) | |
datasets = [load_dataset("eson/cc100-samples", corpus.replace("cc100-", ""), split="train") for corpus in corpuses] | |
stat = _tokenize(tokenizer, datasets) | |
# save to cache | |
len_before = len(cache) | |
cache[cache_id] = stat | |
len_after = len(cache) | |
logger.info(f"saving {cache_id} to in-memory and file cache: {len_before}->{len_after}") | |
with open(cache_path, "w", encoding="utf-8") as f_tmp: | |
json.dump(cache, f_tmp, indent=2) | |
return stat | |
def get_compression_leaderboard( | |
corpuses: List[str] = ['cc100-en'], | |
unit: str = "b_tokens/g_bytes", | |
tokenizer_filter: Optional[str] = None, | |
return_type: Optional[Literal["dict", "dataframe"]] = "dataframe" | |
) -> Union[pd.DataFrame, dict]: | |
""" | |
## TODO | |
- search by organization, | |
""" | |
logger.info(f"corpuses: {corpuses}; unit: {unit}; tokenizer_filter: {tokenizer_filter}") | |
stats = {} | |
if tokenizer_filter is not None: | |
tokenizers = [tokenizer_name for tokenizer_name in all_tokenizers if tokenizer_filter in tokenizer_name] | |
else: | |
tokenizers = all_tokenizers | |
for lang in corpuses: | |
for tokenizer_name in tokenizers: | |
stat = tokenize_corpus(tokenizer_name, [lang]) | |
stats[tokenizer_name] = stat | |
if return_type == "dataframe": | |
token_number_unit, file_size_unit = unit.split("/") | |
reverse_unit = f"{file_size_unit}/{token_number_unit}" | |
stats = to_dataframe(stats, [unit, reverse_unit, "n_chars/n_tokens"]) | |
stats = stats.sort_values(unit) | |
stats = stats.rename(columns={unit: f' ⬆️{unit}'}) | |
return stats | |
def update_compress_rate(): | |
pass | |
def test(): | |
tokenizer_name = "gpt_4" | |
tokenizer = load_tokener(tokenizer_name) | |
stats = {tokenizer_name: tokenize_corpus(tokenizer, ["cc100-en", "cc100-zh-Hans"])} | |
df = to_dataframe(stats) | |
# print(df.to_markdown(index=False, tablefmt='fancy_grid')) | |
logger.info(f"\n{df.to_markdown(index=False)}") | |
def main(): | |
if len(sys.argv) == 3: | |
tokenizer_filter = [sys.argv[1]] | |
corpuses = [sys.argv[2]] | |
else: | |
tokenizer_filter = None | |
corpuses = common_corpuses | |
df = get_compression_leaderboard(corpuses) | |
# print(df.to_markdown(index=False, tablefmt='fancy_grid')) | |
logger.info(f"\n{df.to_markdown(index=False)}") | |
if __name__ == "__main__": | |
main() | |
# test() | |