xusong28 commited on
Commit
5b47e63
1 Parent(s): 7faefc8

upgrade gradio to 3.12.0

Browse files
Files changed (7) hide show
  1. app.py +1 -0
  2. demo_chatbot_jddc.py +3 -2
  3. demo_corrector.py +3 -1
  4. demo_mlm.py +3 -3
  5. demo_sum.py +3 -4
  6. gradio_patch.py +10 -0
  7. info.py +2 -0
app.py CHANGED
@@ -11,6 +11,7 @@ https://gradio.app/docs/#tabbedinterface-header
11
  -
12
  """
13
 
 
14
  import gradio as gr
15
  from demo_sum import sum_iface
16
  from demo_mlm import mlm_iface
 
11
  -
12
  """
13
 
14
+ import gradio_patch
15
  import gradio as gr
16
  from demo_sum import sum_iface
17
  from demo_mlm import mlm_iface
demo_chatbot_jddc.py CHANGED
@@ -4,6 +4,7 @@
4
 
5
  import torch
6
  import gradio as gr
 
7
  from kplug import modeling_kplug_s2s_patch
8
  from transformers import BertTokenizer, BartForConditionalGeneration
9
 
@@ -50,13 +51,13 @@ jddc_iface = gr.Interface(
50
  inputs=[
51
  gr.Textbox(
52
  label="输入文本",
53
- value="发什么快递"), # gr.State() 报错
54
  "state"
55
  ],
56
  outputs=["chatbot", "state"],
57
-
58
  examples=jddc_examples,
59
  title="电商客服--生成式对话(Response Generation)",
 
60
  )
61
 
62
  if __name__ == "__main__":
 
4
 
5
  import torch
6
  import gradio as gr
7
+ from info import article
8
  from kplug import modeling_kplug_s2s_patch
9
  from transformers import BertTokenizer, BartForConditionalGeneration
10
 
 
51
  inputs=[
52
  gr.Textbox(
53
  label="输入文本",
54
+ value="发什么快递"), # gr.State() 报错
55
  "state"
56
  ],
57
  outputs=["chatbot", "state"],
 
58
  examples=jddc_examples,
59
  title="电商客服--生成式对话(Response Generation)",
60
+ article=article,
61
  )
62
 
63
  if __name__ == "__main__":
demo_corrector.py CHANGED
@@ -5,6 +5,7 @@
5
  import time
6
  import torch
7
  import gradio as gr
 
8
  from transformers import FillMaskPipeline
9
  from transformers import BertTokenizer
10
  from kplug.modeling_kplug import KplugForMaskedLM
@@ -79,7 +80,8 @@ corr_iface = gr.Interface(
79
  ],
80
  examples=error_sentences,
81
  title="文本纠错(Corrector)",
82
- description='自动对汉语文本中的拼写、语法、标点等多种问题进行纠错校对,提示错误位置并返回修改建议'
 
83
  )
84
 
85
  if __name__ == "__main__":
 
5
  import time
6
  import torch
7
  import gradio as gr
8
+ from info import article
9
  from transformers import FillMaskPipeline
10
  from transformers import BertTokenizer
11
  from kplug.modeling_kplug import KplugForMaskedLM
 
80
  ],
81
  examples=error_sentences,
82
  title="文本纠错(Corrector)",
83
+ description='自动对汉语文本中的拼写、语法、标点等多种问题进行纠错校对,提示错误位置并返回修改建议',
84
+ article=article
85
  )
86
 
87
  if __name__ == "__main__":
demo_mlm.py CHANGED
@@ -18,6 +18,7 @@ interface = gr.Interface.load(
18
  """
19
 
20
  import gradio as gr
 
21
  from transformers import FillMaskPipeline
22
  from transformers import BertTokenizer
23
  from kplug.modeling_kplug import KplugForMaskedLM
@@ -50,9 +51,8 @@ mlm_iface = gr.Interface(
50
  ),
51
  examples=mlm_examples,
52
  title="文本填词(Fill Mask)",
53
- description='基于KPLUG预训练语言模型,'
54
- '<a href=""> K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding'
55
- ' and Generation in E-Commerce (Findings of EMNLP 2021) </a>。'
56
  )
57
 
58
  if __name__ == "__main__":
 
18
  """
19
 
20
  import gradio as gr
21
+ from info import article
22
  from transformers import FillMaskPipeline
23
  from transformers import BertTokenizer
24
  from kplug.modeling_kplug import KplugForMaskedLM
 
51
  ),
52
  examples=mlm_examples,
53
  title="文本填词(Fill Mask)",
54
+ description='基于KPLUG预训练语言模型',
55
+ article=article
 
56
  )
57
 
58
  if __name__ == "__main__":
demo_sum.py CHANGED
@@ -12,6 +12,7 @@ promp参数
12
 
13
  import torch
14
  import gradio as gr
 
15
  from kplug import modeling_kplug_s2s_patch
16
  from transformers import BertTokenizer, BartForConditionalGeneration
17
 
@@ -47,10 +48,8 @@ sum_iface = gr.Interface(
47
  ),
48
  examples=sum_examples,
49
  title="生成式摘要(Abstractive Summarization)",
50
- description='<div>这是一个生成式摘要的demo,用于电商领域的商品营销文案写作。'
51
- '该demo基于KPLUG预训练语言模型,输入商品信息,输出商品的营销文案。</div>'
52
- '<div><a href="https://aclanthology.org/2021.findings-emnlp.1/">pdf</a> </div>'
53
- '<div><a href="https://github.com/xu-song/k-plug">code </a> </div>'
54
  )
55
 
56
  if __name__ == "__main__":
 
12
 
13
  import torch
14
  import gradio as gr
15
+ from info import article
16
  from kplug import modeling_kplug_s2s_patch
17
  from transformers import BertTokenizer, BartForConditionalGeneration
18
 
 
48
  ),
49
  examples=sum_examples,
50
  title="生成式摘要(Abstractive Summarization)",
51
+ description='生成式摘要,用于电商领域的商品营销文案写作。输入商品信息,输出商品的营销文案。',
52
+ article=article
 
 
53
  )
54
 
55
  if __name__ == "__main__":
gradio_patch.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+
3
+ """
4
+ huggingface默认gradio版本是3.1.7。在多tab下的chatbot报错。因此需要更新到3.12.0
5
+ https://www.kingname.info/2019/10/29/pip-in-code/
6
+ """
7
+
8
+ from pip._internal import main
9
+
10
+ main(['install', 'gradio==3.12.0'])
info.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+
2
+ article = "<p style='text-align: center'><a href='https://aclanthology.org/2021.findings-emnlp.1/'>K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce</a> | <a href='https://github.com/xu-song/k-plug'>Github Repo</a></p>"