Spaces:
Running
Running
| # ============================== | |
| # nsepython.py | |
| # Fully working NSE fetch library | |
| # Uses session + curl fallback for reliability | |
| # ============================== | |
| import os, sys, json, random, datetime, time, logging, re, urllib.parse, zipfile | |
| from collections import Counter | |
| from io import BytesIO, StringIO | |
| import pandas as pd | |
| import requests | |
| # ------------------------- HEADERS ------------------------- | |
| headers = { | |
| "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8", | |
| "accept-language": "en-US,en;q=0.9,en-IN;q=0.8,en-GB;q=0.7", | |
| "cache-control": "max-age=0", | |
| "sec-ch-ua": '"Microsoft Edge";v="129","Not=A?Brand";v="8","Chromium";v="129"', | |
| "sec-ch-ua-mobile": "?0", | |
| "sec-ch-ua-platform": '"Windows"', | |
| "sec-fetch-dest": "document", | |
| "sec-fetch-mode": "navigate", | |
| "sec-fetch-site": "none", | |
| "sec-fetch-user": "?1", | |
| "upgrade-insecure-requests": "1", | |
| "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)" | |
| } | |
| niftyindices_headers = { | |
| 'Connection': 'keep-alive', | |
| 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"', | |
| 'Accept': 'application/json, text/javascript, */*; q=0.01', | |
| 'DNT': '1', | |
| 'X-Requested-With': 'XMLHttpRequest', | |
| 'sec-ch-ua-mobile': '?0', | |
| 'User-Agent': 'Mozilla/5.0', | |
| 'Content-Type': 'application/json; charset=UTF-8', | |
| 'Origin': 'https://niftyindices.com', | |
| 'Sec-Fetch-Site': 'same-origin', | |
| 'Sec-Fetch-Mode': 'cors', | |
| 'Sec-Fetch-Dest': 'empty', | |
| 'Referer': 'https://niftyindices.com/reports/historical-data', | |
| 'Accept-Language': 'en-US,en;q=0.9,hi;q=0.8', | |
| } | |
| curl_headers = ''' -H "authority: beta.nseindia.com" -H "cache-control: max-age=0" -H "dnt: 1" -H "upgrade-insecure-requests: 1" -H "user-agent: Mozilla/5.0" -H "sec-fetch-user: ?1" -H "accept: */*" -H "sec-fetch-site: none" -H "accept-language: en-US,en;q=0.9" --compressed''' | |
| # ------------------------- NSE SESSION ------------------------- | |
| class NSESession: | |
| def __init__(self): | |
| self.s = requests.Session() | |
| self.base_urls = ["https://www.nseindia.com", "https://www.nseindia.com/option-chain"] | |
| self.cookies_file = "nse_cookies.txt" | |
| self.init_session() | |
| def init_session(self): | |
| for url in self.base_urls: | |
| try: | |
| self.s.get(url, headers=headers, timeout=10) | |
| except: | |
| pass | |
| def get_json(self, url): | |
| try: | |
| r = self.s.get(url, headers=headers, timeout=10) | |
| r.raise_for_status() | |
| return r.json() | |
| except: | |
| # fallback: curl | |
| return self.curl_json(url) | |
| def get_text(self, url): | |
| try: | |
| r = self.s.get(url, headers=headers, timeout=10) | |
| r.raise_for_status() | |
| return r.text | |
| except: | |
| # fallback: curl | |
| return self.curl_text(url) | |
| def download_file(self, url, local_path): | |
| try: | |
| r = self.s.get(url, headers=headers, timeout=10) | |
| r.raise_for_status() | |
| with open(local_path, "wb") as f: | |
| f.write(r.content) | |
| return local_path | |
| except: | |
| # fallback: curl | |
| cmd = f'curl -s -L -o {local_path} "{url}"' | |
| os.system(cmd) | |
| if os.path.exists(local_path): | |
| return local_path | |
| return None | |
| def curl_json(self, url): | |
| try: | |
| cmd = f'curl -s -H "User-Agent: Mozilla/5.0" "{url}"' | |
| raw = os.popen(cmd).read() | |
| return json.loads(raw) | |
| except: | |
| return {} | |
| def curl_text(self, url): | |
| cmd = f'curl -s -L "{url}"' | |
| return os.popen(cmd).read() | |
| # Create global session | |
| nse_session = NSESession() | |
| # ------------------------- HELPERS ------------------------- | |
| def nsesymbolpurify(s): return s.replace('&','%26') | |
| def flatten_dict(d, parent="", sep="."): | |
| items={} | |
| for k,v in d.items(): | |
| nk = f"{parent}{sep}{k}" if parent else k | |
| if isinstance(v, dict): items.update(flatten_dict(v, nk, sep)) | |
| else: items[nk] = v | |
| return items | |
| def flatten_nested(d, prefix=""): | |
| flat={} | |
| for k,v in d.items(): | |
| nk = f"{prefix}{k}" if prefix=="" else f"{prefix}.{k}" | |
| if isinstance(v, dict): | |
| flat.update(flatten_nested(v, nk)) | |
| elif isinstance(v, list): | |
| if v and isinstance(v[0], dict): | |
| for i,x in enumerate(v): flat.update(flatten_nested(x, f"{nk}.{i}")) | |
| else: flat[nk]=v | |
| else: flat[nk]=v | |
| return flat | |
| def rename_col(cols): | |
| child=[c.split('.')[-1] for c in cols] | |
| cnt=Counter(child) | |
| new=[] | |
| for c,ch in zip(cols,child): | |
| if cnt[ch]==1: new.append(ch) | |
| else: | |
| p=c.split('.') | |
| new.append(f"{p[-1]}_{p[-2]}" if len(p)>=2 else p[-1]) | |
| return new | |
| def df_from_data(data): | |
| rows=[ flatten_nested(x) if isinstance(x,dict) else {"value":x} for x in data ] | |
| df=pd.DataFrame(rows) | |
| df.columns=rename_col(df.columns) | |
| return df | |
| def _fmt_date(d): | |
| return d.replace("-", "") | |
| # ------------------------- NSE APIs ------------------------- | |
| def nsefetch(url): | |
| return nse_session.get_json(url) | |
| def nse_csv_fetch(url): | |
| return nse_session.get_text(url) | |
| def nse_zip_csv_fetch(url): | |
| try: | |
| r = nse_session.s.get(url, headers=headers, timeout=10) | |
| z = zipfile.ZipFile(BytesIO(r.content)) | |
| dfs = [] | |
| for name in z.namelist(): | |
| if name.lower().endswith(".csv"): | |
| with z.open(name) as f: | |
| dfs.append(pd.read_csv(f)) | |
| return dfs | |
| except: | |
| return [] | |
| # ------------------------- NSE DATA FUNCTIONS ------------------------- | |
| def indices(): | |
| p = nsefetch("https://www.nseindia.com/api/allIndices") | |
| return {"data":pd.DataFrame(p.pop("data")), "dates":pd.DataFrame([p.pop("dates")]), "indices":pd.DataFrame([p])} | |
| def eq(symbol): | |
| symbol=nsesymbolpurify(symbol) | |
| df=nsefetch(f'https://www.nseindia.com/api/quote-equity?symbol={symbol}') | |
| pre=df.pop('preOpenMarket') | |
| out={ | |
| "securityInfo": pd.DataFrame([df["securityInfo"]]), | |
| "priceInfo": pd.DataFrame([flatten_dict(df["priceInfo"])]), | |
| "industryInfo": pd.DataFrame([df["industryInfo"]]), | |
| "pdSectorIndAll": pd.DataFrame([df["metadata"].pop("pdSectorIndAll")]), | |
| "metadata": pd.DataFrame([df["metadata"]]), | |
| "info": pd.DataFrame([df["info"]]), | |
| "preOpen": pd.DataFrame(pre.pop('preopen')), | |
| "preOpenMarket": pd.DataFrame([pre]) | |
| } | |
| return out | |
| def eq_fno(): return nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O') | |
| def eq_der(symbol): return nsefetch('https://www.nseindia.com/api/quote-derivative?symbol='+nsesymbolpurify(symbol)) | |
| def index_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-indices?symbol='+nsesymbolpurify(symbol)) | |
| def eq_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-equities?symbol='+nsesymbolpurify(symbol)) | |
| def nse_holidays(t="trading"): return nsefetch('https://www.nseindia.com/api/holiday-master?type='+t) | |
| def nse_results(index="equities",period="Quarterly"): | |
| if index in ["equities","debt","sme"] and period in ["Quarterly","Annual","Half-Yearly","Others"]: | |
| return pd.json_normalize(nsefetch(f'https://www.nseindia.com/api/corporates-financial-results?index={index}&period={period}')) | |
| print("Invalid Input") | |
| def nse_events(): return pd.json_normalize(nsefetch('https://www.nseindia.com/api/event-calendar')).to_html() | |
| def nse_past_results(symbol): return nsefetch('https://www.nseindia.com/api/results-comparision?symbol='+nsesymbolpurify(symbol)) | |
| def nse_blockdeal(): return nsefetch('https://nseindia.com/api/block-deal') | |
| def nse_marketStatus(): return nsefetch('https://nseindia.com/api/marketStatus') | |
| def nse_circular(mode="latest"): return nsefetch('https://www.nseindia.com/api/latest-circular' if mode=="latest" else 'https://www.nseindia.com/api/circulars') | |
| def nse_fiidii(mode="pandas"): return pd.DataFrame(nsefetch('https://www.nseindia.com/api/fiidiiTradeReact')).to_html() | |
| def nsetools_get_quote(symbol): | |
| p=nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O') | |
| for x in p['data']: | |
| if x['symbol']==symbol.upper(): return x | |
| def nse_index(): return pd.DataFrame(nsefetch('https://iislliveblob.niftyindices.com/jsonfiles/LiveIndicesWatch.json')['data']) | |
| # ------------------------- INDEX FUNCTIONS ------------------------- | |
| def index_history(symbol, start_date, end_date): | |
| # Convert frontend format → NSE expected format | |
| start_date = datetime.strptime(start_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| end_date = datetime.strptime(end_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| data = { | |
| 'cinfo': ( | |
| f"{{'name':'{symbol}'," | |
| f"'startDate':'{start_date}'," | |
| f"'endDate':'{end_date}'," | |
| f"'indexName':'{symbol}'}}" | |
| ) | |
| } | |
| payload = nse_session.s.post( | |
| 'https://niftyindices.com/Backpage.aspx/getHistoricaldatatabletoString', | |
| headers=niftyindices_headers, | |
| json=data | |
| ).json() | |
| payload = json.loads(payload["d"]) | |
| return pd.DataFrame.from_records(payload).to_html() | |
| def index_pe_pb_div(symbol, start_date, end_date): | |
| start_date = datetime.strptime(start_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| end_date = datetime.strptime(end_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| data = {'cinfo': f"{{'name':'{symbol}','startDate':'{start_date}','endDate':'{end_date}','indexName':'{symbol}'}}"} | |
| payload = nse_session.s.post('https://niftyindices.com/Backpage.aspx/getpepbHistoricaldataDBtoString', headers=niftyindices_headers, json=data).json() | |
| payload = json.loads(payload["d"]) | |
| return pd.DataFrame.from_records(payload).to_html() | |
| def index_total_returns(symbol, start_date, end_date): | |
| start_date = datetime.strptime(start_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| end_date = datetime.strptime(end_date, "%d-%m-%Y").strftime("%d%m%Y") | |
| data = {'cinfo': f"{{'name':'{symbol}','startDate':'{start_date}','endDate':'{end_date}','indexName':'{symbol}'}}"} | |
| payload = nse_session.s.post('https://niftyindices.com/Backpage.aspx/getTotalReturnIndexString', headers=niftyindices_headers, json=data).json() | |
| payload = json.loads(payload["d"]) | |
| return pd.DataFrame.from_records(payload).to_html() | |
| # ------------------------- CSV / BHAV ------------------------- | |
| def nse_bhavcopy(d): return pd.read_csv("https://archives.nseindia.com/products/content/sec_bhavdata_full_"+d.replace("-","")+".csv") | |
| def nse_bulkdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/bulk.csv").to_html() | |
| def nse_blockdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/block.csv").to_html() | |
| def nse_preopen(key): | |
| p=nsefetch("https://www.nseindia.com/api/market-data-pre-open?key="+key) | |
| return {"data":df_from_data(p.pop("data")), "rem":df_from_data([p])} | |
| def nse_most_active(t="securities",s="value"): | |
| return pd.DataFrame(nsefetch(f"https://www.nseindia.com/api/live-analysis-most-active-{t}?index={s}")["data"]).to_html() | |
| def nse_eq_symbols(): | |
| return pd.read_csv('https://archives.nseindia.com/content/equities/EQUITY_L.csv')['SYMBOL'].tolist() | |
| def nse_price_band_hitters(b="both",v="AllSec"): | |
| p=nsefetch("https://www.nseindia.com/api/live-analysis-price-band-hitter") | |
| return {"data":pd.DataFrame(p[b][v]["data"]), "count":pd.DataFrame([p['count']])} | |
| def nse_largedeals(mode="bulk_deals"): | |
| p=nsefetch('https://www.nseindia.com/api/snapshot-capital-market-largedeal') | |
| return pd.DataFrame(p["BULK_DEALS_DATA" if mode=="bulk_deals" else "SHORT_DEALS_DATA" if mode=="short_deals" else "BLOCK_DEALS_DATA"]).to_html() | |
| def nse_largedeals_historical(f,t,mode="bulk_deals"): | |
| m = "bulk-deals" if mode=="bulk_deals" else "short-selling" if mode=="short_deals" else "block-deals" | |
| p=nsefetch(f'https://www.nseindia.com/api/historical/{m}?from={f}&to={t}') | |
| return pd.DataFrame(p["data"]).to_html() | |
| def nse_stock_hist(f,t,symbol,series="ALL"): | |
| url=f"https://www.nseindia.com/api/historical/securityArchives?from={f}&to={t}&symbol={symbol.upper()}&dataType=priceVolumeDeliverable&series={series}" | |
| return pd.DataFrame(nsefetch(url)['data']).to_html() | |
| def nse_stock_hist(start, end, symbol, series="ALL"): | |
| """ | |
| NSE Stock historical data (OR API) | |
| start : 'DD-MM-YYYY' | |
| end : 'DD-MM-YYYY' | |
| symbol : NSE symbol (e.g. ITC) | |
| series : ALL | EQ | BE | etc | |
| """ | |
| symbol = nsesymbolpurify(symbol.upper()) | |
| url = ( | |
| "https://www.nseindia.com/api/historicalOR/" | |
| "generateSecurityWiseHistoricalData" | |
| f"?from={start}" | |
| f"&to={end}" | |
| f"&symbol={symbol}" | |
| f"&type=priceVolumeDeliverable" | |
| f"&series={series}" | |
| ) | |
| payload = nsefetch(url) | |
| if not payload or "data" not in payload: | |
| return pd.DataFrame() | |
| return pd.DataFrame(payload["data"]) | |
| def nse_index_live(name): | |
| p=nsefetch(f"https://www.nseindia.com/api/equity-stockIndices?index={name.replace(' ','%20')}") | |
| return {"data":df_from_data(p.pop("data")) if "data" in p else pd.DataFrame(), "rem":df_from_data([p])} | |
| def nse_highlow(date_str): | |
| date_str = date_str.replace("-", "") | |
| url="https://archives.nseindia.com/content/indices/ind_close_all_"+date_str+".csv" | |
| return pd.read_csv(url, header=0).to_html() | |
| def stock_highlow(date_str): | |
| date_str = date_str.replace("-", "") | |
| url="https://archives.nseindia.com/content/CM_52_wk_High_low_"+date_str+".csv" | |
| return pd.read_csv(url, header=2).to_html() | |
| # ------------------------- END OF FILE ------------------------- |