sanchit-gandhi HF staff commited on
Commit
2dae1fd
β€’
1 Parent(s): 45d35e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -12,12 +12,12 @@ pinned: false
12
  The End-to-end Speech Challenge (ESC) is a benchmark for assessing ASR systems on a collection of eight speech recognition datasets. ESC consists of:
13
  </p>
14
  <a href="https://huggingface.co/datasets/esc-bench/esc-datasets" class="block overflow-hidden group">
15
- <div
16
- class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#ECFAFF]"
17
- >
18
- <img alt="" src="/front/assets/promo/spacy_logo.png" class="w-40" />
 
19
  </div>
20
- <div class="underline">ESC Datasets</div>
21
  </a>
22
  <a
23
  href="https://huggingface.co/models?other=esc"
@@ -26,10 +26,9 @@ pinned: false
26
  <div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
27
  <pre
28
  class="break-words leading-1 whitespace-pre-line text-xs text-gray-800">
29
- Official Checkpoints
30
  </pre>
31
  </div>
32
- <div class="underline">Official Checkpoints</div>
33
  </a>
34
  <a
35
  href="https://huggingface.co/spaces/esc-bench/ESC"
@@ -38,10 +37,9 @@ pinned: false
38
  <div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
39
  <pre
40
  class="break-words leading-1 whitespace-pre-line text-xs text-gray-800">
41
- ESC Leaderboard
42
  </pre>
43
  </div>
44
- <div class="underline">ESC Leaderboard</div>
45
  </a>
46
  <p class="lg:col-span-3">
47
  The ESC datasets are sourced from 11 different domains and cover a range of audio and text distributions (speaking styles, background noise, transcription requirements). There is no restriction on architecture or training data: any system capable of processing audio inputs and generating the corresponding transcriptions is eligible to participate. The only constraint is that systems must use the same training and evaluation algorithms across datasets and may not use any dataset-specific pre- or post-processing. The objective of ESC is to encourage the research of more generalisable, multi-domain ASR systems.
 
12
  The End-to-end Speech Challenge (ESC) is a benchmark for assessing ASR systems on a collection of eight speech recognition datasets. ESC consists of:
13
  </p>
14
  <a href="https://huggingface.co/datasets/esc-bench/esc-datasets" class="block overflow-hidden group">
15
+ <div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
16
+ <pre
17
+ class="break-words leading-1 whitespace-pre-line text-xs text-gray-800">
18
+ πŸ€— Datasets
19
+ </pre>
20
  </div>
 
21
  </a>
22
  <a
23
  href="https://huggingface.co/models?other=esc"
 
26
  <div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
27
  <pre
28
  class="break-words leading-1 whitespace-pre-line text-xs text-gray-800">
29
+ πŸ“œ Official Checkpoints
30
  </pre>
31
  </div>
 
32
  </a>
33
  <a
34
  href="https://huggingface.co/spaces/esc-bench/ESC"
 
37
  <div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
38
  <pre
39
  class="break-words leading-1 whitespace-pre-line text-xs text-gray-800">
40
+ πŸ† ESC Leaderboard
41
  </pre>
42
  </div>
 
43
  </a>
44
  <p class="lg:col-span-3">
45
  The ESC datasets are sourced from 11 different domains and cover a range of audio and text distributions (speaking styles, background noise, transcription requirements). There is no restriction on architecture or training data: any system capable of processing audio inputs and generating the corresponding transcriptions is eligible to participate. The only constraint is that systems must use the same training and evaluation algorithms across datasets and may not use any dataset-specific pre- or post-processing. The objective of ESC is to encourage the research of more generalisable, multi-domain ASR systems.