santialferez commited on
Commit
e9d7935
·
1 Parent(s): 887fa5a

first commit

Browse files
_codecs_cn.cp39-mingw_i686.pyd ADDED
Binary file (140 kB). View file
 
app_gradio.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import io
2
+ # import base64
3
+ from PIL import Image
4
+ from fastai.vision.all import load_learner
5
+ from binary2image import get_size, save_file, get_binary_data
6
+ import gradio as gr
7
+ import numpy as np
8
+ import plotly.express as px
9
+
10
+ from scipy import stats
11
+ import pickle
12
+
13
+ ## Loading the models
14
+ entropy_classifier = pickle.load(open('entropy_tester_classifier.pkl', 'rb'))
15
+ model_NonObf = load_learner("model.pkl", cpu=True) # change to "model_NonObf.pkl"
16
+ model_Shikata = load_learner("model.pkl", cpu=True) # change to "model_Shikata.pkl"
17
+ model_XOR = load_learner("model.pkl", cpu=True) # change to "model_XOR.pkl"
18
+
19
+ def entropy_tester(bin_data):
20
+ entropy = stats.entropy(bin_data,base=2)
21
+ pred = entropy_classifier.predict(
22
+ np.array(entropy).reshape(1, -1))
23
+ return pred[0]
24
+
25
+ def process_file(file):
26
+ greyscale_data = get_binary_data(file.name)
27
+
28
+ pred_entropy = entropy_tester(greyscale_data)
29
+
30
+ bin_size = get_size(len(greyscale_data))
31
+ save_file(".", "tempfile", greyscale_data, bin_size)
32
+
33
+ converted_filename = "tempfile.png"
34
+
35
+ # Make prediction depending on the type of obfuscation
36
+ if pred_entropy == "NonObf":
37
+ prediction, _, probas = model_NonObf.predict(converted_filename)
38
+ elif pred_entropy == "Shikata":
39
+ prediction, _, probas = model_Shikata.predict(converted_filename)
40
+ elif pred_entropy == "XOR":
41
+ prediction, _, probas = model_XOR.predict(converted_filename)
42
+
43
+ message = f"Your file is {prediction}!!!"
44
+
45
+ if pred_entropy == "NonObf": pred_entropy = "Non-Obfuscated"
46
+
47
+ # Convert probas to percentages
48
+ probas_percentage = [float(prob) * 100 for prob in probas]
49
+
50
+ fig = px.bar(x=["Goodware", "Malware"],
51
+ y=probas_percentage, labels={'x':'Type', 'y':'Probability (%)'},
52
+ height=300)
53
+
54
+
55
+ return pred_entropy, message, fig, Image.open("tempfile.png")
56
+
57
+ # Define the layout using Blocks, Row, and Column
58
+ with gr.Blocks() as demo:
59
+ with gr.Column(scale=1):
60
+ file = gr.File(label="Upload Executable File")
61
+ with gr.Row():
62
+ with gr.Column():
63
+ text1 = gr.Textbox(label="Prediction")
64
+ prob_dist_img = gr.Plot(label="Probability Distribution")
65
+ with gr.Column():
66
+ text0 = gr.Textbox(label="Type of Obfuscation")
67
+ converted_img = gr.Image(label="Converted Image", height=300)
68
+
69
+ button = gr.Button(value="Process File")
70
+ button.click(process_file, inputs=[file], outputs=[text0, text1, prob_dist_img, converted_img])
71
+
72
+ demo.launch()
binary2image.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Binary to Image Converter."""
2
+ import os
3
+ from argparse import ArgumentParser
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+
7
+
8
+ def get_binary_data(filename):
9
+ """Extract byte values from binary executable file and store them in list.
10
+
11
+ :param file: executable file
12
+ :return: byte value list
13
+ """
14
+ binary_values = []
15
+ with open(filename, "rb") as file:
16
+ while byte := file.read(1):
17
+ binary_values.append(ord(byte))
18
+
19
+ return binary_values
20
+
21
+
22
+ def get_size(data_length):
23
+ """Obtain image size.
24
+
25
+ Source: Malware images: visualization and automatic classification.
26
+ :param data_length: Number of bytes in file
27
+ :return: size as integer tuple
28
+ """
29
+ size = data_length
30
+ kib = 2**10
31
+
32
+ if size < 10 * kib:
33
+ width = 32
34
+ elif size < 30 * kib:
35
+ width = 64
36
+ elif size < 60 * kib:
37
+ width = 128
38
+ elif size < 100 * kib:
39
+ width = 256
40
+ elif size < 200 * kib:
41
+ width = 384
42
+ elif size < 500 * kib:
43
+ width = 512
44
+ elif size < 1000 * kib:
45
+ width = 768
46
+ else:
47
+ width = 1024
48
+
49
+ height = size // width + 1
50
+
51
+ return (width, height)
52
+
53
+
54
+ def save_file(folder, filename, data, size):
55
+ """Save PIL image to disk.
56
+
57
+ :param folder: folder where images will be saved
58
+ :param filename: binary filename
59
+ :param data: grayscale image
60
+ :param size: image size
61
+ """
62
+ image = Image.new("L", size)
63
+ image.putdata(data)
64
+
65
+ name, _ = os.path.splitext(filename)
66
+ name = os.path.basename(name)
67
+ imagename = os.path.join(folder, name + ".png")
68
+
69
+ image.save(imagename)
70
+
71
+
72
+ if __name__ == "__main__":
73
+
74
+ parser = ArgumentParser(
75
+ description="Transform all files in a folder into PNG images"
76
+ )
77
+ parser.add_argument("input_folder", help="Folder with the original files")
78
+ parser.add_argument(
79
+ "output_folder", help="Folder where the images will be saved"
80
+ )
81
+ args = parser.parse_args()
82
+
83
+ files = [
84
+ os.path.join(args.input_folder, bin_file)
85
+ for bin_file in os.listdir(args.input_folder)
86
+ ]
87
+ os.makedirs(args.output_folder, exist_ok=True)
88
+ for bin_file in tqdm(files):
89
+ greyscale_data = get_binary_data(bin_file)
90
+ bin_size = get_size(len(greyscale_data))
91
+ save_file(args.output_folder, bin_file, greyscale_data, bin_size)
entropy_tester_classifier.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb214565a0e5969901fb4707f41369040ab882d8b72531060c404e2d1cc4c80
3
+ size 1895142
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3165c874eb66655b5e859c8733feae933fa0617eb988ec7be91790bf4e2e2f3
3
+ size 47462689
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # CPU-only version of PyTorch
2
+ -f https://download.pytorch.org/whl/cpu/torch_stable.html
3
+ torch==2.0.1
4
+ torchvision==0.15.2
5
+
6
+ # fastai library
7
+ fastai==2.7.12
8
+ timm
tempfile.png ADDED