Face-editor / backend.py
Erwann Millon
refactoring and cleanup
ec39fe8
raw
history blame
No virus
8.22 kB
# from functools import cache
import importlib
import gradio as gr
import matplotlib.pyplot as plt
import torch
import torchvision
import wandb
from icecream import ic
from torch import nn
from torchvision.transforms.functional import resize
from tqdm import tqdm
from transformers import CLIPModel, CLIPProcessor
import lpips
from edit import blend_paths
from img_processing import *
from img_processing import custom_to_pil
from loaders import load_default
import glob
import gc
global log
log=False
# ic.disable()
# ic.enable()
def get_resized_tensor(x):
if len(x.shape) == 2:
re = x.unsqueeze(0)
else: re = x
re = resize(re, (10, 10))
return re
class ProcessorGradientFlow():
"""
This wraps the huggingface CLIP processor to allow backprop through the image processing step.
The original processor forces conversion to numpy then PIL images, which is faster for image processing but breaks gradient flow.
"""
def __init__(self, device="cuda") -> None:
self.device = device
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.image_mean = [0.48145466, 0.4578275, 0.40821073]
self.image_std = [0.26862954, 0.26130258, 0.27577711]
self.normalize = torchvision.transforms.Normalize(
self.image_mean,
self.image_std
)
self.resize = torchvision.transforms.Resize(224)
self.center_crop = torchvision.transforms.CenterCrop(224)
def preprocess_img(self, images):
images = self.center_crop(images)
images = self.resize(images)
images = self.center_crop(images)
images = self.normalize(images)
return images
def __call__(self, images=[], **kwargs):
processed_inputs = self.processor(**kwargs)
processed_inputs["pixel_values"] = self.preprocess_img(images)
processed_inputs = {key:value.to(self.device) for (key, value) in processed_inputs.items()}
return processed_inputs
class ImagePromptOptimizer(nn.Module):
def __init__(self,
vqgan,
clip,
clip_preprocessor,
lpips_fn,
iterations=100,
lr = 0.01,
save_vector=True,
return_val="vector",
quantize=True,
make_grid=False,
lpips_weight = 6.2) -> None:
super().__init__()
self.latent = None
self.device = vqgan.device
vqgan.eval()
self.vqgan = vqgan
self.clip = clip
self.iterations = iterations
self.lr = lr
self.clip_preprocessor = clip_preprocessor
self.make_grid = make_grid
self.return_val = return_val
self.quantize = quantize
self.lpips_weight = lpips_weight
self.perceptual_loss = lpips_fn
def set_latent(self, latent):
self.latent = latent.detach().to(self.device)
def set_params(self, lr, iterations, lpips_weight, reconstruction_steps, attn_mask):
self._attn_mask = attn_mask
self.iterations = iterations
self.lr = lr
self.lpips_weight = lpips_weight
self.reconstruction_steps = reconstruction_steps
def forward(self, vector):
base_latent = self.latent.detach().requires_grad_()
trans_latent = base_latent + vector
if self.quantize:
z_q, *_ = self.vqgan.quantize(trans_latent)
else:
z_q = trans_latent
dec = self.vqgan.decode(z_q)
return dec
def _get_clip_similarity(self, prompts, image, weights=None):
if isinstance(prompts, str):
prompts = [prompts]
elif not isinstance(prompts, list):
raise TypeError("Provide prompts as string or list of strings")
clip_inputs = self.clip_preprocessor(text=prompts,
images=image, return_tensors="pt", padding=True)
clip_outputs = self.clip(**clip_inputs)
similarity_logits = clip_outputs.logits_per_image
if weights:
similarity_logits *= weights
return similarity_logits.sum()
def get_similarity_loss(self, pos_prompts, neg_prompts, image):
pos_logits = self._get_clip_similarity(pos_prompts, image)
if neg_prompts:
neg_logits = self._get_clip_similarity(neg_prompts, image)
else:
neg_logits = torch.tensor([1], device=self.device)
loss = -torch.log(pos_logits) + torch.log(neg_logits)
return loss
def visualize(self, processed_img):
if self.make_grid:
self.index += 1
plt.subplot(1, 13, self.index)
plt.imshow(get_pil(processed_img[0]).detach().cpu())
else:
plt.imshow(get_pil(processed_img[0]).detach().cpu())
plt.show()
def _attn_mask(self, grad):
newgrad = grad
if self._attn_mask is not None:
newgrad = grad * (self._attn_mask)
return newgrad
def _attn_mask_inverse(self, grad):
newgrad = grad
if self._attn_mask is not None:
newgrad = grad * ((self._attn_mask - 1) * -1)
return newgrad
def _get_next_inputs(self, transformed_img):
processed_img = loop_post_process(transformed_img) #* self.attn_mask
processed_img.retain_grad()
lpips_input = processed_img.clone()
lpips_input.register_hook(self._attn_mask_inverse)
lpips_input.retain_grad()
clip_input = processed_img.clone()
clip_input.register_hook(self._attn_mask)
clip_input.retain_grad()
return processed_img, lpips_input, clip_input
def optimize(self, latent, pos_prompts, neg_prompts):
self.set_latent(latent)
transformed_img = self(torch.zeros_like(self.latent, requires_grad=True, device=self.device))
original_img = loop_post_process(transformed_img)
vector = torch.randn_like(self.latent, requires_grad=True, device=self.device)
optim = torch.optim.Adam([vector], lr=self.lr)
if self.make_grid:
plt.figure(figsize=(35, 25))
self.index = 1
for i in tqdm(range(self.iterations)):
optim.zero_grad()
transformed_img = self(vector)
processed_img, lpips_input, clip_input = self._get_next_inputs(transformed_img)
with torch.autocast("cuda"):
clip_loss = self.get_similarity_loss(pos_prompts, neg_prompts, clip_input)
print("CLIP loss", clip_loss)
perceptual_loss = self.perceptual_loss(lpips_input, original_img.clone()) * self.lpips_weight
print("LPIPS loss: ", perceptual_loss)
if log:
wandb.log({"Perceptual Loss": perceptual_loss})
wandb.log({"CLIP Loss": clip_loss})
clip_loss.backward(retain_graph=True)
perceptual_loss.backward(retain_graph=True)
p2 = processed_img.grad
print("Sum Loss", perceptual_loss + clip_loss)
optim.step()
# if i % self.iterations // 10 == 0:
# self.visualize(transformed_img)
yield vector
if self.make_grid:
plt.savefig(f"plot {pos_prompts[0]}.png")
plt.show()
print("lpips solo op")
for i in range(self.reconstruction_steps):
optim.zero_grad()
transformed_img = self(vector)
processed_img = loop_post_process(transformed_img) #* self.attn_mask
processed_img.retain_grad()
lpips_input = processed_img.clone()
lpips_input.register_hook(self._attn_mask_inverse)
lpips_input.retain_grad()
with torch.autocast("cuda"):
perceptual_loss = self.perceptual_loss(lpips_input, original_img.clone()) * self.lpips_weight
if log:
wandb.log({"Perceptual Loss": perceptual_loss})
print("LPIPS loss: ", perceptual_loss)
perceptual_loss.backward(retain_graph=True)
optim.step()
yield vector
yield vector if self.return_val == "vector" else self.latent + vector