Face-editor / ImageState.py
Erwann Millon
update state animation
21d692f
raw
history blame
7.95 kB
import numpy as np
import gc
import os
import imageio
import glob
import uuid
from animation import clear_img_dir
from backend import ImagePromptEditor, log
import torch
import torchvision
import wandb
from edit import blend_paths
from img_processing import custom_to_pil
from PIL import Image
num = 0
class PromptTransformHistory:
def __init__(self, iterations) -> None:
self.iterations = iterations
self.transforms = []
class ImageState:
def __init__(self, vqgan, prompt_optimizer: ImagePromptEditor) -> None:
self.vqgan = vqgan
self.device = vqgan.device
self.blend_latent = None
self.quant = True
self.path1 = None
self.path2 = None
self.img_dir = "./img_history"
if not os.path.exists(self.img_dir):
os.mkdir(self.img_dir)
self.transform_history = []
self.attn_mask = None
self.prompt_optim = prompt_optimizer
self._load_vectors()
self.init_transforms()
def _load_vectors(self):
self.lip_vector = torch.load(
"./latent_vectors/lipvector.pt", map_location=self.device
)
self.blue_eyes_vector = torch.load(
"./latent_vectors/2blue_eyes.pt", map_location=self.device
)
self.asian_vector = torch.load(
"./latent_vectors/asian10.pt", map_location=self.device
)
def create_gif(
total_duration, extend_frames, folder="./img_history", gif_name="face_edit.gif"
):
images = []
paths = list(sorted(glob.glob(folder + "/*")))
print(paths)
frame_duration = total_duration / len(paths)
print(len(paths), "frame dur", frame_duration)
durations = [frame_duration] * len(paths)
if extend_frames:
durations[0] = 1.5
durations[-1] = 3
for file_name in paths:
if file_name.endswith(".png"):
print(file_name)
images.append(imageio.imread(file_name))
imageio.mimsave(gif_name, images, duration=durations)
return gif_name
def init_transforms(self):
self.blue_eyes = torch.zeros_like(self.lip_vector)
self.lip_size = torch.zeros_like(self.lip_vector)
self.asian_transform = torch.zeros_like(self.lip_vector)
self.current_prompt_transforms = [torch.zeros_like(self.lip_vector)]
def clear_transforms(self):
self.init_transforms()
clear_img_dir("./img_history")
return self._render_all_transformations()
def _latent_to_pil(self, latent):
current_im = self.vqgan.decode(latent.to(self.device))[0]
return custom_to_pil(current_im)
def _get_mask(self, img, mask=None):
if img and "mask" in img and img["mask"] is not None:
attn_mask = torchvision.transforms.ToTensor()(img["mask"])
attn_mask = torch.ceil(attn_mask[0].to(self.device))
print("mask set successfully")
else:
attn_mask = mask
return attn_mask
def set_mask(self, img):
self.attn_mask = self._get_mask(img)
x = self.attn_mask.clone()
x = x.detach().cpu()
x = torch.clamp(x, -1.0, 1.0)
x = (x + 1.0) / 2.0
x = x.numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x, "L")
return x
@torch.no_grad()
def _render_all_transformations(self, return_twice=True):
global num
current_vector_transforms = (
self.blue_eyes,
self.lip_size,
self.asian_transform,
sum(self.current_prompt_transforms),
)
new_latent = self.blend_latent + sum(current_vector_transforms)
if self.quant:
new_latent, _, _ = self.vqgan.quantize(new_latent.to(self.device))
image = self._latent_to_pil(new_latent)
image.save(f"{self.img_dir}/img_{num:06}.png")
num += 1
return (image, image) if return_twice else image
def apply_rb_vector(self, weight):
self.blue_eyes = weight * self.blue_eyes_vector
return self._render_all_transformations()
def apply_lip_vector(self, weight):
self.lip_size = weight * self.lip_vector
return self._render_all_transformations()
def update_quant(self, val):
self.quant = val
return self._render_all_transformations()
def apply_asian_vector(self, weight):
self.asian_transform = weight * self.asian_vector
return self._render_all_transformations()
def update_images(self, path1, path2, blend_weight):
if path1 is None and path2 is None:
return None
# Duplicate paths if one is empty
if path1 is None:
path1 = path2
if path2 is None:
path2 = path1
self.path1, self.path2 = path1, path2
if self.img_dir:
clear_img_dir(self.img_dir)
return self.blend(blend_weight)
@torch.no_grad()
def blend(self, weight):
_, latent = blend_paths(
self.vqgan,
self.path1,
self.path2,
weight=weight,
show=False,
device=self.device,
)
self.blend_latent = latent
return self._render_all_transformations()
@torch.no_grad()
def rewind(self, index):
if not self.transform_history:
print("No history")
return self._render_all_transformations()
prompt_transform = self.transform_history[-1]
latent_index = int(index / 100 * (prompt_transform.iterations - 1))
print(latent_index)
self.current_prompt_transforms[-1] = prompt_transform.transforms[
latent_index
].to(self.device)
return self._render_all_transformations()
def _init_logging(lr, iterations, lpips_weight, positive_prompts, negative_prompts):
wandb.init(reinit=True, project="face-editor")
wandb.config.update({"Positive Prompts": positive_prompts})
wandb.config.update({"Negative Prompts": negative_prompts})
wandb.config.update(
dict(lr=lr, iterations=iterations, lpips_weight=lpips_weight)
)
def apply_prompts(
self,
positive_prompts,
negative_prompts,
lr,
iterations,
lpips_weight,
reconstruction_steps,
):
if log:
self._init_logging(
lr, iterations, lpips_weight, positive_prompts, negative_prompts
)
transform_log = PromptTransformHistory(iterations + reconstruction_steps)
transform_log.transforms.append(
torch.zeros_like(self.blend_latent, requires_grad=False)
)
self.current_prompt_transforms.append(
torch.zeros_like(self.blend_latent, requires_grad=False)
)
positive_prompts = [prompt.strip() for prompt in positive_prompts.split("|")]
negative_prompts = [prompt.strip() for prompt in negative_prompts.split("|")]
self.prompt_optim.set_params(
lr,
iterations,
lpips_weight,
attn_mask=self.attn_mask,
reconstruction_steps=reconstruction_steps,
)
for i, transform in enumerate(
self.prompt_optim.optimize(
self.blend_latent, positive_prompts, negative_prompts
)
):
transform_log.transforms.append(transform.detach().cpu())
self.current_prompt_transforms[-1] = transform
with torch.no_grad():
image = self._render_all_transformations(return_twice=False)
if log:
wandb.log({"image": wandb.Image(image)})
yield (image, image)
if log:
wandb.finish()
self.attn_mask = None
self.transform_history.append(transform_log)
gc.collect()
torch.cuda.empty_cache()