Face-editor / app_backend.py
erwann's picture
update config and rm discriminator
9902d5e
raw
history blame
10 kB
# from functools import cache
import importlib
import gradio as gr
import matplotlib.pyplot as plt
import torch
import torchvision
import wandb
from icecream import ic
from torch import nn
from torchvision.transforms.functional import resize
from tqdm import tqdm
from transformers import CLIPModel, CLIPProcessor
import lpips
from edit import blend_paths
from img_processing import *
from img_processing import custom_to_pil
from loaders import load_default
import glob
# global log
log=False
# ic.disable()
# ic.enable()
def get_resized_tensor(x):
if len(x.shape) == 2:
re = x.unsqueeze(0)
else: re = x
re = resize(re, (10, 10))
return re
class ProcessorGradientFlow():
"""
This wraps the huggingface CLIP processor to allow backprop through the image processing step.
The original processor forces conversion to PIL images, which breaks gradient flow.
"""
def __init__(self, device="cuda") -> None:
self.device = device
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.image_mean = [0.48145466, 0.4578275, 0.40821073]
self.image_std = [0.26862954, 0.26130258, 0.27577711]
self.normalize = torchvision.transforms.Normalize(
self.image_mean,
self.image_std
)
self.resize = torchvision.transforms.Resize(224)
self.center_crop = torchvision.transforms.CenterCrop(224)
def preprocess_img(self, images):
images = self.center_crop(images)
images = self.resize(images)
images = self.center_crop(images)
images = self.normalize(images)
return images
def __call__(self, images=[], **kwargs):
processed_inputs = self.processor(**kwargs)
processed_inputs["pixel_values"] = self.preprocess_img(images)
processed_inputs = {key:value.to(self.device) for (key, value) in processed_inputs.items()}
return processed_inputs
class ImagePromptOptimizer(nn.Module):
def __init__(self,
vqgan,
clip,
clip_preprocessor,
iterations=100,
lr = 0.01,
save_vector=True,
return_val="vector",
quantize=True,
make_grid=False,
lpips_weight = 6.2) -> None:
super().__init__()
self.latent = None
self.device = vqgan.device
vqgan.eval()
self.vqgan = vqgan
self.clip = clip
self.iterations = iterations
self.lr = lr
self.clip_preprocessor = clip_preprocessor
self.make_grid = make_grid
self.return_val = return_val
self.quantize = quantize
self.lpips_weight = lpips_weight
self.perceptual_loss = lpips.LPIPS(net='vgg').to(self.device)
def disc_loss_fn(self, logits):
return -torch.mean(logits)
def set_latent(self, latent):
self.latent = latent.detach().to(self.device)
def set_params(self, lr, iterations, lpips_weight, reconstruction_steps, attn_mask):
self.attn_mask = attn_mask
self.iterations = iterations
self.lr = lr
self.lpips_weight = lpips_weight
self.reconstruction_steps = reconstruction_steps
def forward(self, vector):
base_latent = self.latent.detach().requires_grad_()
trans_latent = base_latent + vector
if self.quantize:
z_q, *_ = self.vqgan.quantize(trans_latent)
else:
z_q = trans_latent
dec = self.vqgan.decode(z_q)
return dec
def _get_clip_similarity(self, prompts, image, weights=None):
if isinstance(prompts, str):
prompts = [prompts]
elif not isinstance(prompts, list):
raise TypeError("Provide prompts as string or list of strings")
clip_inputs = self.clip_preprocessor(text=prompts,
images=image, return_tensors="pt", padding=True)
clip_outputs = self.clip(**clip_inputs)
similarity_logits = clip_outputs.logits_per_image
if weights:
similarity_logits *= weights
return similarity_logits.sum()
def get_similarity_loss(self, pos_prompts, neg_prompts, image):
pos_logits = self._get_clip_similarity(pos_prompts, image)
if neg_prompts:
neg_logits = self._get_clip_similarity(neg_prompts, image)
else:
neg_logits = torch.tensor([1], device=self.device)
loss = -torch.log(pos_logits) + torch.log(neg_logits)
return loss
def visualize(self, processed_img):
if self.make_grid:
self.index += 1
plt.subplot(1, 13, self.index)
plt.imshow(get_pil(processed_img[0]).detach().cpu())
else:
plt.imshow(get_pil(processed_img[0]).detach().cpu())
plt.show()
def attn_masking(self, grad):
# print("attnmask 1")
# print(f"input grad.shape = {grad.shape}")
# print(f"input grad = {get_resized_tensor(grad)}")
newgrad = grad
if self.attn_mask is not None:
# print("masking mult")
newgrad = grad * (self.attn_mask)
# print("output grad, ", get_resized_tensor(newgrad))
# print("end atn 1")
return newgrad
def attn_masking2(self, grad):
# print("attnmask 2")
# print(f"input grad.shape = {grad.shape}")
# print(f"input grad = {get_resized_tensor(grad)}")
newgrad = grad
if self.attn_mask is not None:
# print("masking mult")
newgrad = grad * ((self.attn_mask - 1) * -1)
# print("output grad, ", get_resized_tensor(newgrad))
# print("end atn 2")
return newgrad
def optimize(self, latent, pos_prompts, neg_prompts):
self.set_latent(latent)
# self.make_grid=True
transformed_img = self(torch.zeros_like(self.latent, requires_grad=True, device=self.device))
original_img = loop_post_process(transformed_img)
vector = torch.randn_like(self.latent, requires_grad=True, device=self.device)
optim = torch.optim.Adam([vector], lr=self.lr)
if self.make_grid:
plt.figure(figsize=(35, 25))
self.index = 1
for i in tqdm(range(self.iterations)):
optim.zero_grad()
transformed_img = self(vector)
processed_img = loop_post_process(transformed_img) #* self.attn_mask
processed_img.retain_grad()
lpips_input = processed_img.clone()
lpips_input.register_hook(self.attn_masking2)
lpips_input.retain_grad()
clip_clone = processed_img.clone()
clip_clone.register_hook(self.attn_masking)
clip_clone.retain_grad()
# with torch.autocast("cuda"):
clip_loss = self.get_similarity_loss(pos_prompts, neg_prompts, clip_clone)
print("CLIP loss", clip_loss)
perceptual_loss = self.perceptual_loss(lpips_input, original_img.clone()) * self.lpips_weight
print("LPIPS loss: ", perceptual_loss)
# with torch.no_grad():
# disc_logits = self.disc(transformed_img)
# disc_loss = self.disc_loss_fn(disc_logits)
# print(f"disc_loss = {disc_loss}")
# disc_loss2 = self.disc(processed_img)
if log:
wandb.log({"Perceptual Loss": perceptual_loss})
# wandb.log({"Discriminator Loss": disc_loss})
wandb.log({"CLIP Loss": clip_loss})
clip_loss.backward(retain_graph=True)
perceptual_loss.backward(retain_graph=True)
p2 = processed_img.grad
print("Sum Loss", perceptual_loss + clip_loss)
optim.step()
# if i % self.iterations // 10 == 0:
# self.visualize(transformed_img)
yield vector
if self.make_grid:
plt.savefig(f"plot {pos_prompts[0]}.png")
plt.show()
print("lpips solo op")
for i in range(self.reconstruction_steps):
optim.zero_grad()
transformed_img = self(vector)
processed_img = loop_post_process(transformed_img) #* self.attn_mask
processed_img.retain_grad()
lpips_input = processed_img.clone()
lpips_input.register_hook(self.attn_masking2)
lpips_input.retain_grad()
# with torch.autocast("cuda"):
perceptual_loss = self.perceptual_loss(lpips_input, original_img.clone()) * self.lpips_weight
# with torch.no_grad():
# disc_logits = self.disc(transformed_img)
# disc_loss = self.disc_loss_fn(disc_logits)
# print(f"disc_loss = {disc_loss}")
# disc_loss2 = self.disc(processed_img)
# print(f"disc_loss2 = {disc_loss2}")
if log:
wandb.log({"Perceptual Loss": perceptual_loss})
print("LPIPS loss: ", perceptual_loss)
perceptual_loss.backward(retain_graph=True)
optim.step()
yield vector
# torch.save(vector, "nose_vector.pt")
# print("")
# print("DISC STEPS")
# print("*************")
# for i in range(self.reconstruction_steps):
# optim.zero_grad()
# transformed_img = self(vector)
# processed_img = loop_post_process(transformed_img) #* self.attn_mask
# disc_logits = self.disc(transformed_img)
# disc_loss = self.disc_loss_fn(disc_logits)
# print(f"disc_loss = {disc_loss}")
# if log:
# wandb.log({"Disc Loss": disc_loss})
# print("LPIPS loss: ", perceptual_loss)
# disc_loss.backward(retain_graph=True)
# optim.step()
# yield vector
yield vector if self.return_val == "vector" else self.latent + vector