pllava-34b-demo / utils /logger.py
cathyxl
added
f239efc
raw
history blame
8.7 kB
# from MMF: https://github.com/facebookresearch/mmf/blob/master/mmf/utils/logger.py
# Copyright (c) Facebook, Inc. and its affiliates.
import functools
import logging
import os
import sys
import time
import wandb
from typing import Any, Dict, Union
import torch
from .distributed import get_rank, is_main_process
from termcolor import colored
def log_dict_to_wandb(log_dict, step, prefix=""):
"""include a separator `/` at the end of `prefix`"""
if not is_main_process():
return
log_dict = {f"{prefix}{k}": v for k, v in log_dict.items()}
wandb.log(log_dict, step)
def setup_wandb(config):
if not (config.wandb.enable and is_main_process()):
return
run = wandb.init(
config=config,
project=config.wandb.project,
entity=config.wandb.entity,
name=os.path.basename(config.output_dir),
reinit=True
)
return run
def setup_output_folder(save_dir: str, folder_only: bool = False):
"""Sets up and returns the output file where the logs will be placed
based on the configuration passed. Usually "save_dir/logs/log_<timestamp>.txt".
If env.log_dir is passed, logs will be directly saved in this folder.
Args:
folder_only (bool, optional): If folder should be returned and not the file.
Defaults to False.
Returns:
str: folder or file path depending on folder_only flag
"""
log_filename = "train_"
log_filename += time.strftime("%Y_%m_%dT%H_%M_%S")
log_filename += ".log"
log_folder = os.path.join(save_dir, "logs")
if not os.path.exists(log_folder):
os.path.mkdirs(log_folder)
if folder_only:
return log_folder
log_filename = os.path.join(log_folder, log_filename)
return log_filename
def setup_logger(
output: str = None,
color: bool = True,
name: str = "mmf",
disable: bool = False,
clear_handlers=True,
*args,
**kwargs,
):
"""
Initialize the MMF logger and set its verbosity level to "INFO".
Outside libraries shouldn't call this in case they have set there
own logging handlers and setup. If they do, and don't want to
clear handlers, pass clear_handlers options.
The initial version of this function was taken from D2 and adapted
for MMF.
Args:
output (str): a file name or a directory to save log.
If ends with ".txt" or ".log", assumed to be a file name.
Default: Saved to file <save_dir/logs/log_[timestamp].txt>
color (bool): If false, won't log colored logs. Default: true
name (str): the root module name of this logger. Defaults to "mmf".
disable: do not use
clear_handlers (bool): If false, won't clear existing handlers.
Returns:
logging.Logger: a logger
"""
if disable:
return None
logger = logging.getLogger(name)
logger.propagate = False
logging.captureWarnings(True)
warnings_logger = logging.getLogger("py.warnings")
plain_formatter = logging.Formatter(
"%(asctime)s | %(levelname)s | %(name)s : %(message)s",
datefmt="%Y-%m-%dT%H:%M:%S",
)
distributed_rank = get_rank()
handlers = []
logging_level = logging.INFO
# logging_level = logging.DEBUG
if distributed_rank == 0:
logger.setLevel(logging_level)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging_level)
if color:
formatter = ColorfulFormatter(
colored("%(asctime)s | %(name)s: ", "green") + "%(message)s",
datefmt="%Y-%m-%dT%H:%M:%S",
)
else:
formatter = plain_formatter
ch.setFormatter(formatter)
logger.addHandler(ch)
warnings_logger.addHandler(ch)
handlers.append(ch)
# file logging: all workers
if output is None:
output = setup_output_folder()
if output is not None:
if output.endswith(".txt") or output.endswith(".log"):
filename = output
else:
filename = os.path.join(output, "train.log")
if distributed_rank > 0:
filename = filename + f".rank{distributed_rank}"
os.makedirs(os.path.dirname(filename), exist_ok=True)
fh = logging.StreamHandler(_cached_log_stream(filename))
fh.setLevel(logging_level)
fh.setFormatter(plain_formatter)
logger.addHandler(fh)
warnings_logger.addHandler(fh)
handlers.append(fh)
# Slurm/FB output, only log the main process
# save_dir = get_mmf_env(key="save_dir")
if "train.log" not in filename and distributed_rank == 0:
filename = os.path.join(output, "train.log")
sh = logging.StreamHandler(_cached_log_stream(filename))
sh.setLevel(logging_level)
sh.setFormatter(plain_formatter)
logger.addHandler(sh)
warnings_logger.addHandler(sh)
handlers.append(sh)
logger.info(f"Logging to: {filename}")
# Remove existing handlers to add MMF specific handlers
if clear_handlers:
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
# Now, add our handlers.
logging.basicConfig(level=logging_level, handlers=handlers)
return logger
def setup_very_basic_config(color=True):
plain_formatter = logging.Formatter(
"%(asctime)s | %(levelname)s | %(name)s : %(message)s",
datefmt="%Y-%m-%dT%H:%M:%S",
)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.INFO)
if color:
formatter = ColorfulFormatter(
colored("%(asctime)s | %(name)s: ", "green") + "%(message)s",
datefmt="%Y-%m-%dT%H:%M:%S",
)
else:
formatter = plain_formatter
ch.setFormatter(formatter)
# Setup a minimal configuration for logging in case something tries to
# log a message even before logging is setup by MMF.
logging.basicConfig(level=logging.INFO, handlers=[ch])
# cache the opened file object, so that different calls to `setup_logger`
# with the same file name can safely write to the same file.
@functools.lru_cache(maxsize=None)
def _cached_log_stream(filename):
return open(filename, "a")
# ColorfulFormatter is adopted from Detectron2 and adapted for MMF
class ColorfulFormatter(logging.Formatter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def formatMessage(self, record):
log = super().formatMessage(record)
if record.levelno == logging.WARNING:
prefix = colored("WARNING", "red", attrs=["blink"])
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
prefix = colored("ERROR", "red", attrs=["blink", "underline"])
else:
return log
return prefix + " " + log
class TensorboardLogger:
def __init__(self, log_folder="./logs", iteration=0):
# This would handle warning of missing tensorboard
from torch.utils.tensorboard import SummaryWriter
self.summary_writer = None
self._is_master = is_main_process()
# self.timer = Timer()
self.log_folder = log_folder
if self._is_master:
# current_time = self.timer.get_time_hhmmss(None, format=self.time_format)
current_time = time.strftime("%Y-%m-%dT%H:%M:%S")
# self.timer.get_time_hhmmss(None, format=self.time_format)
tensorboard_folder = os.path.join(
self.log_folder, f"tensorboard_{current_time}"
)
self.summary_writer = SummaryWriter(tensorboard_folder)
def __del__(self):
if getattr(self, "summary_writer", None) is not None:
self.summary_writer.close()
def _should_log_tensorboard(self):
if self.summary_writer is None or not self._is_master:
return False
else:
return True
def add_scalar(self, key, value, iteration):
if not self._should_log_tensorboard():
return
self.summary_writer.add_scalar(key, value, iteration)
def add_scalars(self, scalar_dict, iteration):
if not self._should_log_tensorboard():
return
for key, val in scalar_dict.items():
self.summary_writer.add_scalar(key, val, iteration)
def add_histogram_for_model(self, model, iteration):
if not self._should_log_tensorboard():
return
for name, param in model.named_parameters():
np_param = param.clone().cpu().data.numpy()
self.summary_writer.add_histogram(name, np_param, iteration)