celldetection / app.py
ericup's picture
General Update
20b8a33 verified
raw
history blame
6.73 kB
import spaces
import gradio as gr
from util import imread, imsave, copy_skimage_data
import torch
from PIL import Image, ImageDraw
import numpy as np
from os.path import join
def torch_compile(*args, **kwargs):
def decorator(func):
return func
return decorator
torch.compile = torch_compile # temporary workaround
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
default_score_thresh = .9
default_nms_thresh = np.round(np.pi / 10, 4)
default_samples = 128
default_order = 5
examples_dir = 'examples'
copy_skimage_data(examples_dir)
examples = [
[join(examples_dir, 'bbbc039_test_00014.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
default_nms_thresh, True, 64, True],
[join(examples_dir, 'coins.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
default_nms_thresh, True, 64, True],
[join(examples_dir, 'cell.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
default_nms_thresh, True, 64, True],
]
@spaces.GPU
def predict(
filename, model=None,
enable_score_threshold=False, score_threshold=.9,
enable_nms_threshold=False, nms_threshold=0.3141592653589793,
enable_samples=False, samples=128,
use_label_channels=False,
enable_order=False, order=5,
device=None,
):
from cpn import CpnInterface
from prep import multi_norm
from celldetection import label_cmap, to_h5, data, __version__
global default_model
assert isinstance(filename, str)
if device is None:
if torch.cuda.device_count():
device = 'cuda'
else:
device = 'cpu'
meta = dict(
cd_version=__version__,
filename=str(filename),
model=model,
device=device,
use_label_channels=use_label_channels,
enable_score_threshold=enable_score_threshold,
score_threshold=float(score_threshold),
enable_order=enable_order,
order=order,
enable_nms_threshold=enable_nms_threshold,
nms_threshold=float(nms_threshold),
)
print(meta, flush=True)
raw = img = imread(filename)
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
if model is None or len(str(model)) <= 0:
model = default_model
img = multi_norm(img, 'cstm-mix') # TODO
kw = {}
if enable_score_threshold:
kw['score_thresh'] = score_threshold
if enable_nms_threshold:
kw['nms_thresh'] = nms_threshold
if enable_order:
kw['order'] = order
if enable_samples:
kw['samples'] = samples
m = CpnInterface(model.strip(), device=device, **kw)
y = m(img, reduce_labels=not use_label_channels)
dst_h5 = '.'.join(filename.split('.')[:-1]) + '.h5'
to_h5(
dst_h5, inputs=img, **y,
attributes=dict(inputs=meta)
)
labels = y['labels']
vis_labels = label_cmap(labels)
dst_csv = '.'.join(filename.split('.')[:-1]) + '.csv'
data.labels2property_table(
labels,
"label", "area", "feret_diameter_max", "bbox", "centroid", "convex_area",
"eccentricity", "equivalent_diameter",
"extent", "filled_area", "major_axis_length",
"minor_axis_length", "orientation", "perimeter",
"solidity", "mean_intensity", "max_intensity", "min_intensity",
intensity_image=raw
).to_csv(dst_csv)
return vis_labels, img, dst_h5, dst_csv
with gr.Blocks(title='Cell Segmentation with Contour Proposal Networks') as app:
with gr.Row():
gr.Markdown("<center><strong><font size='7'>"
"Cell Segmentation with Contour Proposal Networks 🤗</font></strong></center>")
with gr.Row():
with gr.Column():
img = gr.components.Image(label="Upload Input Image", type="filepath", interactive=True,
value=examples[0][0])
with gr.Column():
model_name = gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)
with gr.Row():
score_thresh_ck = gr.components.Checkbox(label="Use custom Score Threshold", value=False)
score_thresh = gr.components.Slider(minimum=0, maximum=1, label="Score Threshold",
value=default_score_thresh)
with gr.Row():
nms_thresh_ck = gr.components.Checkbox(label="Use custom NMS Threshold", value=False)
nms_thresh = gr.components.Slider(minimum=0, maximum=1, label="NMS Threshold", value=default_nms_thresh)
# with gr.Row():
# # The range of this would need to be model dependent
# order_ck = gr.components.Checkbox(label="Use custom Order", value=False)
# order = gr.components.Slider(minimum=0, maximum=1, label="Order", value=default_order)
with gr.Row():
samples_ck = gr.components.Checkbox(label="Use custom Sample Points", value=False)
samples = gr.components.Slider(minimum=8, maximum=256, label="Sample Points", value=default_samples)
with gr.Row():
channels = gr.components.Checkbox(label="Allow overlapping objects", value=True)
with gr.Row():
clr = gr.Button('Reset')
btn = gr.Button('Run')
with gr.Row():
with gr.Column():
out_img = gr.Image(label="Processed Image")
with gr.Column():
out_vis = gr.Image(label="Label Image (random colors, transparent overlap)")
with gr.Row():
out_h5 = gr.File(label="Download Results as HDF5 File")
out_csv = gr.File(label="Download Properties as CSV File")
with gr.Row():
gr.Examples(
fn=predict,
examples=examples,
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
channels],
outputs=[out_vis, out_img, out_h5, out_csv],
cache_examples=True,
batch=False
)
btn.click(
predict,
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
channels],
outputs=[out_vis, out_img, out_h5, out_csv]
)
clr.click(
lambda: (
None, default_score_thresh, default_nms_thresh, False, False, None, None, None, False, default_samples),
inputs=[],
outputs=[img, score_thresh, nms_thresh, score_thresh_ck, nms_thresh_ck, out_img, out_h5, out_vis, samples_ck,
samples]
)
app.launch()