model-editing / utils.py
Charles Lin
All algs except KE working.
8335d0c
import datetime
import typing
import numpy as np
import struct
import os
import getpass
import logging
import torch
import torch.nn as nn
from collections import defaultdict
import math
LOG = logging.getLogger(__name__)
def masked_mean(values, mask):
assert mask.dtype == torch.bool
assert values.shape == mask.shape
return (values * mask.float()).sum() / mask.sum().float()
def mask_hf_labels(labels, null_token=0):
valid_mask = labels != -100
valid_labels = labels.masked_fill(~valid_mask, null_token)
return valid_mask, valid_labels
def gather_log_probs(logits, labels):
assert labels.dim() == logits.dim() - 1
assert labels.shape == logits.shape[:-1]
return logits.log_softmax(-1).gather(-1, labels.unsqueeze(-1)).squeeze(-1)
def off_diagonal(mat):
assert mat.dim() == 2
# assert mat.shape[0] == mat.shape[1]
mask = ~torch.eye(max(mat.shape), dtype=torch.bool)
mask = mask[:mat.shape[0], :mat.shape[1]]
off_d = mat[mask]
assert off_d.numel() == mat.shape[0] * mat.shape[1] - min(mat.shape)
return off_d
def set_dropout(model, p):
if p is not None:
n_reset = 0
for m in model.modules():
if isinstance(m, nn.Dropout):
m.p = p
n_reset += 1
if hasattr(m, "dropout"): # Requires for BART, which uses F.dropout
if isinstance(m.dropout, float):
m.dropout = p
n_reset += 1
if hasattr(m, "activation_dropout"): # Requires for BART, which uses F.dropout
if isinstance(m.activation_dropout, float):
m.activation_dropout = p
n_reset += 1
LOG.info(f"Set {n_reset} dropout modules to p={p}")
def _inner_params(named_parameters, inner_names):
param_dict = dict(named_parameters)
return [(n, param_dict[n]) for n in inner_names]
def shift_targets(config):
return "t5" not in config.model.name.lower() and "blender" not in config.model.name.lower()
# https://stackoverflow.com/questions/32871539/integer-factorization-in-python
def factorization(n):
return [(i, n // i) for i in range(1, int(n**0.5) + 1) if n % i == 0]
def scr():
if os.path.exists("/scr-ssd"):
scr_dir = "/scr-ssd/" + getpass.getuser()
else:
scr_dir = "/scr/" + getpass.getuser()
if not os.path.exists(scr_dir):
os.makedirs(scr_dir)
return scr_dir
def uuid(digits=4):
if not hasattr(uuid, "uuid_value"):
uuid.uuid_value = struct.unpack('I', os.urandom(4))[0] % int(10**digits)
return uuid.uuid_value
def formatted_timestamp(time=None):
if time is None:
time = datetime.datetime.now()
return time.strftime("%d/%m/%Y-%H:%M:%S/%f")
def time_delta_seconds(start, finish=None):
assert type(start) == str
t1 = datetime.datetime.strptime(start, "%d/%m/%Y-%H:%M:%S/%f")
if finish is not None:
assert type(finish) == str
t2 = datetime.datetime.strptime(finish, "%d/%m/%Y-%H:%M:%S/%f")
else:
t2 = datetime.datetime.now()
return (t2 - t1).total_seconds()
def dict_to(d, device):
new_dict = {}
for k, v in d.items():
if isinstance(v, torch.Tensor):
new_dict[k] = v.to(device)
elif isinstance(v, dict):
new_dict[k] = dict_to(v, device)
else:
new_dict[k] = v
return new_dict
def safe_backward(loss, parameters, accumulate=1, allow_unused=False, backward=False):
if backward:
(loss / accumulate).backward()
else:
parameters = list(parameters) # Capture the generator output
grads = torch.autograd.grad(loss, parameters, allow_unused=allow_unused)
nan, inf = False, False
for g in grads:
if g is not None:
nan |= g.isnan().any().item()
inf |= g.isinf().any().item()
if not (nan or inf):
for p, g in zip(parameters, grads):
if g is None:
continue
if p.grad is None:
p.grad = g / accumulate
else:
p.grad += g / accumulate
else:
LOG.info(f"Skipping grad accumulation because inf: {inf} nan: {nan}")
def _logits(x):
if hasattr(x, "logits"):
return x.logits
elif hasattr(x, "scores"):
return torch.cat(x.scores).unsqueeze(0)
return x
def _last_encoder_state(x):
if hasattr(x, "encoder_last_hidden_state"):
return x.encoder_last_hidden_state
elif hasattr(x, "encoder_hidden_states"):
return x.encoder_hidden_states[-1]
else:
return x.hidden_states[-1]
def load_archive(path):
import torch
if not os.path.exists(path):
# We've not passed an explicit path, but a part of the filename
wd = '/iris/u/clin/code/efk/'
directories = ["outputs", "multirun"]
matches = []
for d in directories:
search = os.path.join(wd, d)
for run_dir in os.listdir(search):
if path in run_dir:
matches.append(os.path.join(search, run_dir))
assert len(matches) == 1, f">1 matches for search {path}; specify exact path"
full_run_dir = matches[0]
if "0" in os.listdir(full_run_dir):
full_run_dir = os.path.join(full_run_dir, "0")
models_dir = os.path.join(full_run_dir, "models")
models = os.listdir(models_dir)
non_bk = [m for m in models if not m.endswith(".bk")]
assert (
len(non_bk) == 1
), f"Expected a single model in {models_dir}, got {len(non_bk)}"
path = os.path.join(models_dir, non_bk[0])
LOG.info(f"Loading checkpoint from {path}")
archive = torch.load(path, map_location="cpu")
LOG.info("Load complete.")
return archive, path
def flatten_dict(d):
to_process = list(d.items())
output = {}
while len(to_process):
k, v = to_process.pop()
if isinstance(v, typing.MutableMapping):
to_process.extend([(f"{k}.{k_}", v_) for (k_, v_) in v.items()])
else:
assert k not in output.keys(), "Somehow ended up with duplicate keys"
output[k] = v
return output
def add_padding(tokenizer, model):
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
model.transformer.wte.weight.data[-1] = model.transformer.wte.weight.data.mean(0)
def add_sep(tokenizer, model):
tokenizer.add_special_tokens({'sep_token': '[SEP]'})
# model.resize_token_embeddings(len(tokenizer))
# model.lm_head.weight.data[-1, :] = model.lm_head.weight.data.mean(0)
class EarlyStopper:
def __init__(self, patience: int, key: str, minimize: bool = False):
self.best_value = 1e9 if minimize else -1e9
self.best_iter = 0
self.current_iter = 0
self.key = key
self.patience = patience
self.minimize = minimize
self._stop = False
def update(self, idx, stats):
assert self.key in stats, f"'{self.key}' not in stats dict"
value = stats[self.key]
new_best = value < self.best_value if self.minimize else value > self.best_value
if new_best:
self.best_value = value
self.best_iter = idx
self.current_iter = idx
return new_best
def should_stop(self):
self._stop |= self.current_iter - self.best_iter >= self.patience
return self._stop
class RunningStatAverager:
def __init__(self, suffix="", exclude=["grad/"], compute_ppl: bool = True):
self.underlying = None
self.suffix = suffix
self.exclude = exclude
self.compute_ppl = compute_ppl
self.reset()
def add(self, d: dict):
for k, v in d.items():
if not any([k.startswith(prefix) for prefix in self.exclude]):
if len(self.suffix):
self.underlying[f"{k}_{self.suffix}"].append(v)
else:
self.underlying[k].append(v)
def average(self):
average = {}
for k, v in self.underlying.items():
if not k.startswith("nll/"):
average[k] = sum(v) / len(v)
else:
assert len(k.split("/")) == 2, f"Invalid key {k}"
name = k.split("/")[1]
token_counts = self.underlying[f"n_tokens/{name}"]
total_nll = sum([nll * c for nll, c in zip(v, token_counts)])
average[k] = total_nll / sum(token_counts)
if self.compute_ppl:
average[f"perplexity/{name}"] = math.e ** average[k]
return {k: v if not isinstance(v, torch.Tensor) else v.item() for k, v in average.items()}
def reset(self):
self.underlying = defaultdict(list)
class EditBatchSampler:
def __init__(
self,
n,
memorize_mode=False,
loc_disjoint=True,
seed=0,
hard_neg=False,
hard_neg_prob=1.0,
loc_distr_matrix=None,
loc_idx_matrix=None,
keep_probs=None,
mutex=None
):
self.memorize_mode = memorize_mode
self.n = n
self.loc_disjoint = loc_disjoint
self.rng = np.random.default_rng(seed)
self.hard_neg = hard_neg
self.hard_neg_prob = hard_neg_prob
self.loc_probs = loc_distr_matrix
self.loc_idxs = loc_idx_matrix
self.keep_probs = np.array(keep_probs)[:self.n] if keep_probs is not None else None
self.mutex = mutex[:self.n] if mutex is not None else None
self._init()
def _init(self):
idxs = np.arange(self.n)
if self.keep_probs is not None:
sample = self.rng.binomial(1, self.keep_probs).astype(np.bool)
idxs = idxs[sample]
self.perm = self.rng.permutation(idxs)
self.edit_position = 0
def get_edit_idxs(self, batch_size):
if self.mutex is None:
idxs = set([int(idx) for idx in self.perm[self.edit_position: self.edit_position + batch_size]])
self.edit_position += batch_size
else:
mutexes = []
idxs = []
def notin(x, mutexes):
for m in mutexes:
if x in m or m in x:
return False
return True
while len(idxs) < batch_size:
new_idx = self.perm[self.edit_position]
if notin(self.mutex[new_idx], mutexes):
mutexes.append(self.mutex[new_idx])
idxs.append(int(new_idx))
self.edit_position += 1
if self.edit_position == self.perm.shape[0]:
return None
idxs = set(idxs)
return idxs
def sample(self, batch_size, return_hard_flag=False):
if self.memorize_mode:
return list(range(batch_size)), list(range(batch_size, batch_size * 2))
if self.edit_position + batch_size >= self.perm.shape[0]:
self._init() # Re-start if we end with a partially-sized batch
edit_idxs = self.get_edit_idxs(batch_size)
if edit_idxs is None:
self._init()
edit_idxs = self.get_edit_idxs(batch_size)
if edit_idxs is None:
raise RuntimeError(f"No valid batches of size {batch_size} exist!")
if self.hard_neg:
assert self.loc_probs is not None, "hard_neg is on, but don't have distance matrix!"
def get_loc_idxs():
if self.hard_neg and self.rng.uniform() < self.hard_neg_prob:
return [int(self.rng.choice(self.loc_idxs[idx], p=self.loc_probs[idx])) for idx in edit_idxs], True
else:
# Use deterministic implementation in case edit batches are large
non_edit_idxs = list(set(range(self.n)) - set(edit_idxs))
return [int(idx) for idx in self.rng.choice(non_edit_idxs, batch_size)], False
loc_idxs, hard = get_loc_idxs()
if self.loc_disjoint:
steps = 0
while len(edit_idxs.intersection(set(loc_idxs))) > 0:
loc_idxs, hard = get_loc_idxs()
steps += 1
if steps > 100:
raise RuntimeError("Can't find disjoint loc_idxs and edit_idxs!")
if return_hard_flag:
return list(edit_idxs), loc_idxs, hard
else:
return list(edit_idxs), loc_idxs
def parent_module(model, pname):
comps = pname.split('.')
parent = model
for comp in comps[:-1]:
if hasattr(parent, comp):
parent = getattr(parent, comp)
elif comp.isdigit():
parent = parent[int(comp)]
else:
raise RuntimeError(f"Couldn't find child module {comp}")
assert hasattr(parent, comps[-1])
return parent
def build_distr_matrix(edit_qs, config, loc_qs=None, slice_size=1000):
n = len(edit_qs)
device = "cuda" if torch.cuda.is_available() else "cpu"
num_neighbors = config.data.hard_neg_neighbors
num_exclude = config.data.hard_neg_exclude
temp = config.data.hard_neg_temp
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import pytorch_cos_sim
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder=scr()).to(device)
ind_matrix = torch.zeros((n, num_neighbors - num_exclude), dtype=torch.long)
distr_matrix = torch.full((n, num_neighbors - num_exclude), float('nan'))
edit_encodings = torch.FloatTensor(embedding_model.encode(edit_qs, batch_size=256)).to(device)
# If loc_qs is None then build the similarity matrix between edit_qs and itself
loc_encodings = edit_encodings if loc_qs is None else embedding_model.encode(loc_qs, batch_size=256)
if isinstance(loc_encodings, np.ndarray):
loc_encodings = torch.FloatTensor(loc_encodings).to(device)
for idx in range(0, n, slice_size):
end_idx = idx + slice_size if idx + slice_size <= n else n
slice_encodings = edit_encodings[idx:end_idx]
sim_rows = pytorch_cos_sim(slice_encodings, loc_encodings)
indices = sim_rows.topk(num_neighbors, -1).indices[:, num_exclude:]
ind_matrix[idx:end_idx] = indices.cpu()
distr_matrix[idx:end_idx] = sim_rows.gather(-1, indices).mul(temp).exp().cpu()
assert not torch.isnan(distr_matrix).any()
LOG.info(f"Built hard negative distribution matrix of size {distr_matrix.shape}")
distr_matrix = distr_matrix.numpy()
distr_matrix = distr_matrix / distr_matrix.sum(-1, keepdims=True)
return distr_matrix, ind_matrix.numpy()