model-editing / algs /serac.py
Charles Lin
Generation working. Todo: model edits; add model checkpoints. Also, we are only loading an editable model upon switching algs but we should load it when the page loads
9b78f9c
import torch
import copy
import transformers
import logging
from utils import scr, set_dropout, _logits, add_padding, add_sep
from editable_model import EditableModel
from models import BertClassifier
LOG = logging.getLogger(__name__)
def translate_tokens(tokens, from_tok, to_tok):
tokens = tokens.masked_fill(tokens == -100, from_tok.pad_token_id)
text = from_tok.batch_decode(tokens, skip_special_tokens=True)
return to_tok(text, return_tensors="pt")["input_ids"].to(tokens.device)
class SERAC(EditableModel):
def __init__(self, model, config, model_constructor, classifier=None, classifier_tok=None,
replacement=None, replacement_tok=None, cache_inputs=None, cache_labels=None,
cache_embeds=None, scale=None):
super().__init__(model, config, model_constructor)
if classifier is None:
if config.rep.cross_attend and not config.rep.cls_class.endswith("ForSequenceClassification"):
LOG.warn(f"Switching {config.rep.cls_class} to {config.rep.cls_class}ForSequenceClassification for cross-attend")
config.rep.cls_class += "ForSequenceClassification"
self.classifier = getattr(transformers, config.rep.cls_class).from_pretrained(config.rep.cls_name, cache_dir=scr())
if self.config.rep.checkpoint_grad:
LOG.info(f"Checking for checkpointing: {hasattr(self.classifier.config, 'gradient_checkpointing')}")
self.classifier.config.gradient_checkpointing = True
self.classifier_tok = transformers.AutoTokenizer.from_pretrained(config.rep.cls_name, cache_dir=scr())
if not self.config.rep.cross_attend and 'bert' in self.config.rep.cls_name:
self.classifier.pooler = None # we don't need the classification head
elif not self.config.rep.cross_attend and "mpnet" not in self.config.rep.cls_name:
if hasattr(self.classifier, "pooler"):
self.classifier.pooler = None # we don't need the classification head
set_dropout(self.classifier, config.dropout)
if self.config.rep.lora is not None:
self.classifier = LoraModel(self.classifier, self.config.rep.lora)
else:
assert isinstance(classifier, torch.nn.Module), f"Classifier is a {type(classifier)}!"
assert isinstance(classifier_tok, transformers.PreTrainedTokenizerBase), f"Classifier tok is {type(classifier_tok)}!"
self.classifier, self.classifier_tok = classifier, classifier_tok
if replacement is None:
# self.replacement_tok = getattr(transformers, config.model.tokenizer_class).from_pretrained(config.model.tokenizer_name,
# cache_dir=scr())
self.replacement_tok = transformers.AutoTokenizer.from_pretrained(config.model.small_name, cache_dir=scr())
# if self.replacement_tok.sep_token is None:
# self.replacement_tok.sep_token = self.replacement_tok.eos_token
if (False and self.config.rep.freeze_cntr):
self.replacement = None
else:
if config.model.class_name == "BertClassifier":
self.replacement = BertClassifier(config.model.small_name)
else:
self.replacement = getattr(transformers, config.model.class_name).from_pretrained(config.model.small_name, cache_dir=scr())
if self.replacement_tok.sep_token is None and "gpt" not in self.model.name_or_path.lower():
add_sep(self.replacement_tok, self.replacement)
if self.replacement_tok.pad_token is None:
add_padding(self.replacement_tok, self.replacement)
set_dropout(self.replacement, config.dropout)
else:
assert isinstance(replacement, torch.nn.Module), "Rep is {type(replacement)}!"
assert isinstance(replacement_tok, transformers.PreTrainedTokenizerBase), "Rep tok is {type(replacement_tok)}!"
self.replacement, self.replacement_tok = replacement, replacement_tok
if self.config.rep.cross_attend:
self.scale = None
else:
if scale is None:
self.register_buffer("scale", torch.tensor(1.0))
# self.scale = nn.Parameter(torch.tensor(1.0))
else:
self.scale = scale
if cache_inputs is None:
self.cache_inputs = []
self.cache_labels = []
if config.rep.cache_embeds and not config.rep.cross_attend:
self.cache_embeds = {}
else:
assert isinstance(cache_inputs, list), f"Cache inputs is {cache_inputs}"
assert isinstance(cache_labels, list), f"Cache labels is {cache_labels}"
self.cache_inputs = copy.deepcopy(cache_inputs)
self.cache_labels = copy.deepcopy(cache_labels)
if config.rep.cache_embeds and not config.rep.cross_attend:
assert isinstance(cache_embeds, dict), f"Cache embeds is {cache_embeds}"
self.cache_embeds = copy.deepcopy(cache_embeds)
def state_dict(self, destination=None, prefix="", keep_vars=False):
state_dict = super().state_dict(prefix=prefix, keep_vars=keep_vars) # Get default state dict
model_keys = self.model.state_dict(prefix=prefix, keep_vars=keep_vars).keys() # Remove model params
for k in model_keys:
del state_dict[f"model.{k}"]
if self.config.rep.freeze_cntr:
cntr_keys = self.replacement.state_dict().keys()
for k in cntr_keys:
del state_dict[f"replacement.{k}"]
state_dict["model_config"] = self.model.config # Include model config
return state_dict
def load_state_dict(self, state_dict, strict: bool = True):
config = state_dict["model_config"]
del state_dict["model_config"]
if config != self.model.config:
LOG.info("Loaded model config doesn't match current model config.")
LOG.info(f"Loaded: {config}")
LOG.info(f"Current: {self.model.config}")
if (False and self.config.rep.freeze_cntr):
rep_keys = list(state_dict.keys())
for k in rep_keys:
if k.startswith("replacement"):
del state_dict[k]
res = super().load_state_dict(state_dict, False)
else:
try:
res = super().load_state_dict(state_dict, False)
except RuntimeError:
LOG.info("Load failed; trying again without loading counterfactual model weights.")
rep_keys = list(state_dict.keys())
for k in rep_keys:
if k.startswith("replacement"):
del state_dict[k]
res = super().load_state_dict(state_dict, False)
# We should only have missing keys for the model, and no unexpected keys
def ok_to_miss(k):
return k.startswith("model.") or ((False and self.config.rep.freeze_cntr) and k.startswith("replacement."))
missing_keys = [k for k in res.missing_keys if not ok_to_miss(k)]
assert len(missing_keys) == 0, f"Should only have missing keys for model: {missing_keys}."
assert len(res.unexpected_keys) == 0, "Shouldn't have any unexpected keys"
return res
def outer_parameters(self, grouped=False):
if self.config.rep.freeze is not None:
modlist = None
for m in self.classifier.modules():
if isinstance(m, torch.nn.ModuleList):
modlist = m
break
model_params = list(modlist[-self.config.rep.freeze:].parameters())
else:
model_params = list(self.classifier.parameters())
if self.config.rep.lora is not None or self.config.rep.freeze is not None:
cls = self.classifier.base_model if self.config.rep.lora else self.classifier
if hasattr(cls, "classifier"):
model_params.extend(cls.classifier.parameters())
if hasattr(cls, "pre_classifier"):
model_params.extend(cls.pre_classifier.parameters())
if not (False and self.config.rep.freeze_cntr):
model_params.extend(list(self.replacement.parameters()))
extra_params = []
if grouped:
return [
dict(params=model_params, lr=self.config.lr),
dict(params=extra_params, lr=self.config.lr_lr)
]
else:
return model_params + extra_params
def edit(self, batch, condition=None, detach_history=False):
def detokenize(toks, tok):
tokens = toks.masked_fill(toks == -100, tok.pad_token_id)
return tok.batch_decode(tokens, skip_special_tokens=True)
inputs = detokenize(batch["input_ids"], self.replacement_tok)
if "bert" in self.config.model.name:
labels = ["" for _ in batch["labels"]]
else:
labels = detokenize(batch["labels"], self.replacement_tok)
cache_inputs = self.cache_inputs + inputs
cache_labels = self.cache_labels + labels
if self.config.rep.cache_embeds and not self.config.rep.cross_attend:
cls_inputs = self.build_cls_cache_inputs(inputs, labels)
with torch.no_grad():
embeds = self.compute_cls_embeddings(cls_inputs)
cache_embeds = {inp: emb for inp, emb in zip(cls_inputs, embeds)}
cache_embeds.update(self.cache_embeds)
else:
cache_embeds = None
new_model = SERAC(self.model, self.config, self.model_constructor, self.classifier, self.classifier_tok,
self.replacement, self.replacement_tok, cache_inputs, cache_labels, cache_embeds, self.scale)
new_model.train(self.training)
return new_model, {}
def stats(self):
return self.last_stats
def compute_cls_embeddings(self, text):
inputs = self.classifier_tok(text, return_tensors="pt", padding=True).to(self.config.device)
if 'bert' in self.config.rep.cls_name:
embeds = self.classifier(**inputs).last_hidden_state[:, 0].unsqueeze(1)
else:
embeds = self.classifier(**inputs).pooler_output.unsqueeze(1)
embeds = embeds.view(embeds.shape[0], self.config.rep.dist_heads, -1)
if self.config.rep.bound_embeds:
embeds = embeds.tanh()
return embeds
def embedding_logsim_matrix(self, cls_ctxs, test_input_text):
if self.config.rep.cache_embeds and not self.config.rep.cross_attend and not self.training:
ctx_embeds = torch.cat([self.cache_embeds[ctx] for ctx in cls_ctxs])
else:
ctx_embeds = self.compute_cls_embeddings(cls_ctxs)
main_embeds = self.compute_cls_embeddings(test_input_text)
if self.config.rep.cos:
cos = (ctx_embeds[None] * main_embeds[:, None]).sum(-1) / (ctx_embeds[None].norm(2, -1) * main_embeds[:, None].norm(2, -1))
dists = 1 - cos
else:
dists = (ctx_embeds[None] - main_embeds[:, None]).norm(2, -1)
if self.config.rep.square:
dists = dists ** 2
dists = dists.min(-1).values # get rid of the dists head dimension
assert dists.min() >= 0, "Shouldn't have negative distances!"
cls_logsims = -dists * self.scale
return cls_logsims
def crossattend_logsim_matrix(self, cls_ctxs, test_input_texts):
batch = [ctx + self.classifier_tok.sep_token + test for test in test_input_texts for ctx in cls_ctxs]
batch_toks = self.classifier_tok(batch, return_tensors="pt", padding=True).to(self.config.device)
batch_logsims = self.classifier(**batch_toks).logits.log_softmax(-1)[:, 0]
logsim_matrix = batch_logsims.view(len(test_input_texts), len(cls_ctxs))
return logsim_matrix
def build_rep_cache_contexts(self):
sep = " "
if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
# The labels are include in the inputs for autoregressive models. Cut off the label for the classifier
ctxs = [cin + sep for cin in self.cache_inputs]
else:
ctxs = [cin + sep + clab + sep for cin, clab in zip(self.cache_inputs, self.cache_labels)]
return ctxs
def build_cls_cache_inputs(self, cache_inputs=None, cache_labels=None):
sep = self.classifier_tok.sep_token
if cache_inputs is None:
cache_inputs = self.cache_inputs
if cache_labels is None:
cache_labels = self.cache_labels
if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
# The labels are include in the inputs for autoregressive models. Cut off the label for the classifier
inputs = [cin.rsplit(" ", 1)[0] + sep for cin in cache_inputs]
else:
inputs = [cin + sep + clab + sep for cin, clab in zip(cache_inputs, cache_labels)]
return inputs
def build_rep_input_tokens(self, kwargs, idxs, generation=False):
assert len(idxs) == len(kwargs["input_ids"]), "Need one cache idx for each test input"
cache_contexts = self.build_rep_cache_contexts()
selected_contexts = [cache_contexts[idx.item()] for idx in idxs]
test_inputs = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
rep_texts = [ctx + inp for ctx, inp in zip(selected_contexts, test_inputs)]
rep_input_tokens = self.replacement_tok(rep_texts, return_tensors="pt", padding=True).to(self.config.device)
rep_kwargs = {
"input_ids": rep_input_tokens["input_ids"],
"attention_mask": rep_input_tokens["attention_mask"],
}
if not generation:
rep_kwargs["labels"] = kwargs["labels"]
# if self.config.task in ["fc", "fnli"]:
# del rep_kwargs["labels"]
if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
# Add 'ignore' labels for the prepended cache inputs
pre = torch.full((kwargs["labels"].shape[0], rep_kwargs["input_ids"].shape[-1] - kwargs["labels"].shape[-1]), -100,
device=kwargs["labels"].device)
rep_kwargs["labels"] = torch.cat((pre, kwargs["labels"]), dim=-1)
return rep_kwargs
def run_classifier(self, *inputs, **kwargs):
cache_inputs = self.build_cls_cache_inputs()
test_inputs = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
if self.config.rep.cross_attend:
log_sim_matrix = self.crossattend_logsim_matrix(cache_inputs, test_inputs)
else:
log_sim_matrix = self.embedding_logsim_matrix(cache_inputs, test_inputs)
sims = log_sim_matrix.exp()
assert sims.max() <= 1, "Similarities shouldn't exceed 1!"
cls_sims, cls_idxs = sims.max(-1)
return cls_sims, cls_idxs, log_sim_matrix
def generate(self, *args, **kwargs):
# input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 20
base_generate_fn = (
self.model.forward if type(self.model) == BertClassifier
else lambda *args, **kwargs: self.model.generate(*args, **kwargs)
)
cntr_generate_fn = (
self.replacement.forward if type(self.replacement) == BertClassifier
else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs)
)
# assert len(args) == 0, "Should only pass named arguments to generate()"
if len(self.cache_inputs) > 0:
override = kwargs.get("override")
if override:
del kwargs["override"]
cls_sims, cls_idxs, _ = self.run_classifier(*args, **kwargs)
# assert cls_sims.numel() == 1
# print(f"Cache score: {cls_sims.item()} " + ("[MISS]" if cls_sims.item() < 0.5 else "[HIT]"))
use_cntr = (override == "cntr") if override is not None else (cls_sims.item() > 0.5)
if use_cntr:
rep_input = self.build_rep_input_tokens(kwargs, cls_idxs, generation=True)
kwargs["input_ids"] = rep_input["input_ids"]
kwargs["attention_mask"] = rep_input["attention_mask"]
# rep_input_text = self.replacement_tok.decode(rep_input["input_ids"][0])
# print(f"Returning counterfactual model output for '{rep_input_text}'")
if self.config.rep.freeze_cntr:
return base_generate_fn(*args, **kwargs)
else:
return cntr_generate_fn(*args, **kwargs)
# print(f"Returning base model output for '{input_text}'")
return base_generate_fn(*args, **kwargs)
def forward(self, *inputs, return_logits_only=True, eps=torch.finfo(torch.float32).eps, pos_pairs=None, **kwargs):
grad_enabled = torch.is_grad_enabled()
torch.set_grad_enabled(self.training)
# need to do soft mixing of logits if we're doing supervised training or we've specifically requested it
soft = (not self.config.rep.supervised) or self.config.rep.soft_weighting
with torch.no_grad():
if len(self.cache_inputs) == 0:
super_out = super().forward(*inputs, **kwargs).float()
torch.set_grad_enabled(grad_enabled)
return super_out
else:
base_logits = super().forward(*inputs, **kwargs).float()
if soft:
if base_logits.dim() == 3:
base_probs = base_logits.softmax(-1)
else:
base_probs = base_logits.sigmoid()
del base_logits
cls_sims, cls_idxs, cls_logits = self.run_classifier(*inputs, **kwargs)
rep_cls_inputs = self.build_rep_input_tokens(kwargs, cls_idxs)
if self.config.rep.freeze_cntr:
rep_cls_logits = _logits(super().forward(**rep_cls_inputs))
else:
rep_cls_logits = _logits(self.replacement(**rep_cls_inputs))
if pos_pairs is not None:
assert (pos_pairs[:, 0] == torch.arange(pos_pairs.shape[0], device=pos_pairs.device)).all()
gold_idxs = pos_pairs[:, 1]
# print("IDX acc:", (cls_idxs == gold_idxs).shape, (cls_idxs == gold_idxs).float().mean())
rep_gold_inputs = self.build_rep_input_tokens(kwargs, gold_idxs)
if (False and self.config.rep.freeze_cntr):
rep_gold_logits = _logits(super().forward(**rep_gold_inputs))
else:
rep_gold_logits = _logits(self.replacement(**rep_gold_inputs))
else:
rep_gold_logits = rep_cls_logits
cls_sims = cls_sims.view(-1, 1) # For (binary) classification, predictions are (B x 1)
if rep_cls_logits.dim() == 3:
cls_sims.unsqueeze_(-1) # For generation/seq2seq, predictions are (B x S x V)
stats = {
'sims/mean': cls_sims.mean().item(),
'sims/pos': (cls_sims >= 0.5).float().mean().item(),
'sims/neg': (cls_sims < 0.5).float().mean().item(),
'params/scale': self.scale.item() if self.scale is not None else 0.0,
}
if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
rep_cls_logits = rep_cls_logits[:, -kwargs["labels"].shape[-1]:, :]
if soft:
rep_weight = cls_sims
if base_probs.dim() == 3:
mixture_logits = ((1 - rep_weight) * base_probs + rep_weight * rep_cls_logits.softmax(-1) + eps).log()
else:
mixture_logits = ((1 - rep_weight) * base_probs + rep_weight * rep_cls_logits.sigmoid() + eps).log()
else:
rep_idxs = torch.where(cls_sims > 0.5)[0]
mixture_logits = base_logits
if rep_idxs.numel() > 0:
mixture_logits[rep_idxs] = rep_cls_logits[rep_idxs]
torch.set_grad_enabled(grad_enabled)
if return_logits_only:
return mixture_logits
else:
return mixture_logits, cls_logits, rep_gold_logits, stats
if __name__ == '__main__':
import types
model = transformers.GPT2LMHeadModel.from_pretrained("gpt2")
config = types.SimpleNamespace()
config.model.inner_params = [
"transformer.h.9.mlp.c_fc.weight",
"transformer.h.9.mlp.c_proj.weight",
"transformer.h.10.mlp.c_fc.weight",
"transformer.h.10.mlp.c_proj.weight",
"transformer.h.11.mlp.c_fc.weight",
"transformer.h.11.mlp.c_proj.weight",
]
config.edit_lr = 0.0001
config.gtn = types.SimpleNamespace()
config.gtn.n_hidden = 1
config.gtn = config.gtn.__dict__
gtn = SERAC(model, config, lambda: copy.deepcopy(model)).cuda()
# torch.save(gtn.state_dict(), "test_state.pt")
import pdb; pdb.set_trace()
gtn.load_state_dict(torch.load("test_state.pt"))
x = torch.arange(20).view(1, 20).cuda() + 1000
orig_logits = gtn(x)
edited = gtn.edit(x, masks=torch.ones_like(x), labels=x)
post_logits = gtn(x)
assert torch.allclose(orig_logits, post_logits)
orig_param = [p for (n, p) in gtn.model.named_parameters() if n == config.model.inner_params[-1]][0]
edited_param = [p for (n, p) in edited.model.named_parameters() if n == config.model.inner_params[-1]][0]
LOG.info((orig_param - edited_param).abs().max())
edited.eval()
LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited.edit_loss_fn(edited(x).logits, x)["nll"])
edited2 = edited.edit(x, masks=torch.ones_like(x), labels=x)
LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited2(x, labels=x).loss)