Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| from fastai.vision.all import * | |
| from io import BytesIO | |
| import requests | |
| import streamlit as st | |
| """ | |
| # 珊瑚疾病狀態 | |
| 使用卷積神經網路分類珊瑚疾病狀態以支持保護海洋生態系統目標 | |
| 分類包括珊瑚白化(Coral bleaching)、珊瑚扁蟲(Coral Flatworm)、黑帶病(Black Band Disease)、蝕骨海綿(Cliona spp)、骨骼侵蝕病(Skeletal Eroding Band coral)。 | |
| #可以複製上述五種疾病的英文名稱查詢圖片,來此驗證。 | |
| """ | |
| def predict(img): | |
| st.image(img, caption="Your image", use_column_width=True) | |
| pred, key, probs = learn_inf.predict(img) | |
| # st.write(learn_inf.predict(img)) | |
| f""" | |
| ## This **{'is ' if pred == 'mi' else 'is not'}** an MI (heart attack). | |
| ### Rediction result: {pred} | |
| ### Probability of {pred}: {probs[key].item()*100: .2f}% | |
| """ | |
| path = "./" | |
| learn_inf = load_learner(path + "resnet34_stage-2.pkl") | |
| option = st.radio("", ["Upload Image", "Image URL"]) | |
| if option == "Upload Image": | |
| uploaded_file = st.file_uploader("Please upload an image.") | |
| if uploaded_file is not None: | |
| img = PILImage.create(uploaded_file) | |
| predict(img) | |
| else: | |
| url = st.text_input("Please input a url.") | |
| if url != "": | |
| try: | |
| response = requests.get(url) | |
| pil_img = PILImage.create(BytesIO(response.content)) | |
| predict(pil_img) | |
| except: | |
| st.text("Problem reading image from", url) | |