Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
from transformers.tools import HfAgent
|
8 |
+
|
9 |
+
|
10 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
+
|
12 |
+
|
13 |
+
class SmartAgent:
|
14 |
+
def __init__(self):
|
15 |
+
self.agent = HfAgent("https://api-inference.huggingface.co/chat/agent")
|
16 |
+
print("SmartAgent initialized with Hugging Face tools.")
|
17 |
+
|
18 |
+
def __call__(self, question: str) -> str:
|
19 |
+
print(f"[SmartAgent] Received question: {question[:100]}")
|
20 |
+
try:
|
21 |
+
result = self.agent.run(question)
|
22 |
+
print(f"[SmartAgent] Agent result: {result}")
|
23 |
+
return str(result)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"[SmartAgent] Error: {e}")
|
26 |
+
return f"Agent error: {e}"
|
27 |
+
|
28 |
+
|
29 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
30 |
+
space_id = os.getenv("SPACE_ID")
|
31 |
+
if profile:
|
32 |
+
username = f"{profile.username}"
|
33 |
+
else:
|
34 |
+
return "Please Login to Hugging Face with the button.", None
|
35 |
+
|
36 |
+
api_url = DEFAULT_API_URL
|
37 |
+
questions_url = f"{api_url}/questions"
|
38 |
+
submit_url = f"{api_url}/submit"
|
39 |
+
|
40 |
+
try:
|
41 |
+
agent = SmartAgent()
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error initializing agent: {e}", None
|
44 |
+
|
45 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
46 |
+
|
47 |
+
try:
|
48 |
+
response = requests.get(questions_url, timeout=15)
|
49 |
+
response.raise_for_status()
|
50 |
+
questions_data = response.json()
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error fetching questions: {e}", None
|
53 |
+
|
54 |
+
results_log = []
|
55 |
+
answers_payload = []
|
56 |
+
for item in questions_data:
|
57 |
+
task_id = item.get("task_id")
|
58 |
+
question_text = item.get("question")
|
59 |
+
if not task_id or question_text is None:
|
60 |
+
continue
|
61 |
+
try:
|
62 |
+
submitted_answer = agent(question_text)
|
63 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
64 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
65 |
+
except Exception as e:
|
66 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
67 |
+
|
68 |
+
submission_data = {
|
69 |
+
"username": username.strip(),
|
70 |
+
"agent_code": agent_code,
|
71 |
+
"answers": answers_payload
|
72 |
+
}
|
73 |
+
|
74 |
+
try:
|
75 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
76 |
+
response.raise_for_status()
|
77 |
+
result_data = response.json()
|
78 |
+
final_status = (
|
79 |
+
f"Submission Successful!\n"
|
80 |
+
f"User: {result_data.get('username')}\n"
|
81 |
+
f"Score: {result_data.get('score', 'N/A')}%\n"
|
82 |
+
f"Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}\n"
|
83 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
84 |
+
)
|
85 |
+
return final_status, pd.DataFrame(results_log)
|
86 |
+
except Exception as e:
|
87 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
88 |
+
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# Smart AI Agent (Web, Image, Video, and QA Support)")
|
91 |
+
gr.Markdown("""
|
92 |
+
This agent can:
|
93 |
+
- Answer complex questions
|
94 |
+
- Perform web searches
|
95 |
+
- Explain images or videos from URLs
|
96 |
+
|
97 |
+
Please login and run the evaluation to test the agent.
|
98 |
+
""")
|
99 |
+
gr.LoginButton()
|
100 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
101 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
102 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers")
|
103 |
+
|
104 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
demo.launch(debug=True, share=False)
|