FairUP / src /tecent_processing /tecent_RHGN_pre_processing.py
erasmopurif's picture
First commit
d2a8669
raw
history blame
12.7 kB
import pandas as pd
import numpy as np
import torch
import dgl
import fastText
from fainress_component import disparate_impact_remover, reweighting, sample
def tec_RHGN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None):
# load and clean data
if debaising_approach != None:
if special_case == True:
df_user.dropna(inplace=True)
age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)
# binarize age
df_user = apply_bin_age(df_user)
#df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy()
#df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True)
if debaising_approach == 'disparate_impact_remover':
df_user = disparate_impact_remover(df_user, sens_attr, label)
elif debaising_approach == 'reweighting':
df_user = reweighting(df_user, sens_attr, label)
elif debaising_approach == 'sample':
df_user = sample(df_user, sens_attr, label)
else:
df.dropna(inplace=True)
age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
df[["age_range"]] = df[["age_range"]].applymap(lambda x:age_dic[x])
df.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)
df = apply_bin_age(df)
df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy()
df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True)
if debaising_approach == 'disparate_impact_remover':
df = disparate_impact_remover(df, sens_attr, label)
elif debaising_approach == 'reweighting':
df = reweighting(df, sens_attr, label)
elif debaising_approach == 'sample':
df = sample(df, sens_attr, label)
df_user, df_item, df_click = divide_data2(df)
else:
if special_case == False:
print('special case is False')
df_user, df_item, df_click = divide_data(df)
# df_user process
df_user.dropna(inplace=True)
age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)
# binarize age
df_user = apply_bin_age(df_user)
# df_item process
df_item.dropna(inplace=True)
df_item.rename(columns={"item_id":"pid", "brand_code":"brand"}, inplace=True)
df_item.reset_index(drop=True, inplace=True)
df_item = df_item.sample(frac=0.15, random_state=11)
df_item.reset_index(drop=True, inplace=True)
# df_click process
df_click.dropna(inplace=True)
df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True)
df_click.reset_index(drop=True, inplace=True)
df_click = df_click.sample(frac=0.15, random_state=11)
df_click.reset_index(drop=True, inplace=True)
df_click = df_click[df_click["uid"].isin(df_user["uid"])]
df_click = df_click[df_click["pid"].isin(df_item["pid"])]
df_click.drop_duplicates(inplace=True)
df_click.reset_index(drop=True, inplace=True)
# Before filtering
users = set(df_click.uid.tolist())
items = set(df_click.pid.tolist())
print('User before filtering {} and items before filtering {}'.format(len(users), len(items)))
df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2)
sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0])
print("After filtering, there are %d interaction events from %d users and %d items (sparsity: %.4f%%)" %
(df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100))
# After filtering
users = set(df_click.uid.tolist())
items = set(df_click.pid.tolist())
print('Users after filtering {} and items after filtering {}'.format(len(users), len(items)))
# Process
df_user = df_user[df_user['uid'].isin(users)]
df_item = df_item[df_item['pid'].isin(items)]
df_user.reset_index(drop=True, inplace=True)
df_item.reset_index(drop=True, inplace=True)
df_user = df_user.astype({"uid": "str"}, copy=False)
df_item = df_item.astype({'pid': 'str', 'cid1': 'str', 'cid2': 'str', 'cid3': 'str', 'brand': 'str'}, copy=False)
df_click = df_click.astype({'uid': 'str', 'pid': 'str'}, copy=False)
if debaising_approach != None and special_case == True:
df_user.uid = df_user.uid.astype(float).astype(int) # works
df_user.uid = df_user.uid.astype(str)
# Build a dictionary and remove duplicate items
if debaising_approach != None and special_case == False:
user_dic = {k: v for v,k in enumerate(df_user.uid)}
cid1_dic = {k: v for v,k in enumerate(df_extra.cid1_name.drop_duplicates())}
cid2_dic = {k: v for v,k in enumerate(df_extra['cid2_name'].drop_duplicates())}
cid3_dic = {k: v for v,k in enumerate(df_extra.cid3_name.drop_duplicates())}
brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())}
else:
user_dic = {k: v for v,k in enumerate(df_user.uid)}
cid1_dic = {k: v for v, k in enumerate(df_item.cid1_name.drop_duplicates())}
cid2_dic = {k: v for v, k in enumerate(df_item['cid2_name'].drop_duplicates())}
cid3_dic = {k: v for v, k in enumerate(df_item.cid3_name.drop_duplicates())}
brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())}
item_dic = {}
c1, c2, c3, brand = [], [], [], []
for i in range(len(df_item)):
k = df_item.at[i,'pid']
v = i
item_dic[k] = v
if debaising_approach != None and special_case == False:
c1.append(cid1_dic[df_extra.at[i,'cid1_name']])
c2.append(cid2_dic[df_extra.at[i,'cid2_name']])
c3.append(cid3_dic[df_extra.at[i,'cid3_name']])
brand.append(brand_dic[df_item.at[i,'brand']])
else:
c1.append(cid1_dic[df_item.at[i,'cid1_name']])
c2.append(cid2_dic[df_item.at[i,'cid2_name']])
c3.append(cid3_dic[df_item.at[i,'cid3_name']])
brand.append(brand_dic[df_item.at[i,'brand']])
if debaising_approach != None:
df_item.drop(columns=["price"], inplace=True)
else:
df_item.drop(columns=["cid1_name", "cid2_name", "cid3_name", "price", "item_name", "seg_name"], inplace=True)
#df_user['bin_age'] = df_user['bin_age'].replace(1,2)
#df_user['bin_age'] = df_user['bin_age'].replace(0,1)
#df_user['bin_age'] = df_user['bin_age'].replace(2,0)
if debaising_approach != None:
if 'bin_age' not in df_user:
df_user = df_user.join(df_user['bin_age'])
# Save?
# Generate Graph
G, cid1_feature, cid2_feature, cid3_feature, brand_feature = generate_graph(df_user,
df_item,
df_click,
user_dic,
item_dic,
cid1_dic,
cid2_dic,
cid3_dic,
brand_dic,
c1,
c2,
c3,
brand,
debaising_approach)
return G, cid1_feature, cid2_feature, cid3_feature, brand_feature # brand_feature not used (same as cid4_feature?)
def divide_data(df):
df_user = df[['user_id', 'gender', 'age_range']].copy()
df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'cid1_name', 'cid2_name', 'cid3_name','brand_code', 'price', 'item_name', 'seg_name']].copy()
df_click = df[['user_id', 'item_id']].copy()
return df_user, df_item, df_click
def divide_data2(df):
df_user = df[['uid', 'gender', 'age']].copy()
df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'brand_code', 'price']].copy()
df_click = df[['uid', 'item_id']].copy()
return df_user, df_item, df_click
def apply_bin_age(df_user):
df_user["bin_age"] = df_user["age"]
df_user["bin_age"] = df_user["bin_age"].replace(1,0)
df_user["bin_age"] = df_user["bin_age"].replace(2,1)
df_user["bin_age"] = df_user["bin_age"].replace(3,1)
df_user["bin_age"] = df_user["bin_age"].replace(4,1)
return df_user
def get_count(tp, id):
playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
count = playcount_groupbyid.size()
return count
def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
# Only keep the triplets for users who clicked on at least min_uc items
if min_uc > 0:
usercount = get_count(tp, user)
tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
# Only keep the triplets for items which were clicked on by at least min_sc users.
if min_sc > 0:
itemcount = get_count(tp, item)
tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
# Update both usercount and itemcount after filtering
usercount, itemcount = get_count(tp, user), get_count(tp, item)
return tp, usercount, itemcount
def generate_graph(df_user, df_item, df_click, user_dic, item_dic, cid1_dic, cid2_dic, cid3_dic, brand_dic, c1, c2, c3, brand, debaising_approach):
u = {v:k for k,v in user_dic.items()}
i = {v:k for k,v in item_dic.items()}
click_user = [user_dic[user] for user in df_click.uid]
click_item = [item_dic[item] for item in df_click.pid]
data_dict = {
('user', 'click', 'item'): (torch.tensor(click_user), torch.tensor(click_item)),
('item', 'click-by', 'user'): (torch.tensor(click_item), torch.tensor(click_user))
}
G = dgl.heterograph(data_dict)
# todo import the fasttext correctly
model = fasttext.load_model('../cc.zh.200.bin')
temp = {k: model.get_sentence_vector(v) for v, k in cid1_dic.items()}
cid1_feature = torch.tensor([temp[k] for _, k in cid1_dic.items()])
temp = {k: model.get_sentence_vector(v) for v, k in cid2_dic.items()}
cid2_feature = torch.tensor([temp[k] for _, k in cid2_dic.items()])
temp = {k: model.get_sentence_vector(v) for v, k in cid3_dic.items()}
cid3_feature = torch.tensor([temp[k] for _, k in cid3_dic.items()])
temp = {k: model.get_sentence_vector(v) for v, k in brand_dic.items()}
brand_feature = torch.tensor([temp[k] for _, k in brand_dic.items()])
# Passing labels into label
if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting':
df_user['gender'] = df_user['gender'].astype(np.int64)
label_gender = df_user.gender
label_age = df_user.age
label_bin_age = df_user.bin_age
G.nodes['user'].data['gender'] = torch.tensor(label_gender[:G.number_of_nodes('user')])
G.nodes['user'].data['age'] = torch.tensor(label_age[:G.number_of_nodes('user')])
G.nodes['user'].data['bin_age'] = torch.tensor(label_bin_age[:G.number_of_nodes('user')])
G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')])
G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')])
G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')])
G.nodes['item'].data['brand'] = torch.tensor(brand[:G.number_of_nodes('item')])
return G, cid1_feature, cid2_feature, cid3_feature, brand_feature