Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import gradio as gr
|
6 |
+
from urllib.request import urlretrieve
|
7 |
+
from model import Net
|
8 |
+
|
9 |
+
# Loads latest model state from Github
|
10 |
+
urlretrieve("https://github.com/equ1/mnist-interface/tree/main/saved_models")
|
11 |
+
|
12 |
+
model_timestamps = [filename[10:-3]
|
13 |
+
for filename in os.listdir("./saved_models")]
|
14 |
+
latest_timestamp = max(model_timestamps)
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
dev = "cuda:0"
|
18 |
+
else:
|
19 |
+
dev = "cpu"
|
20 |
+
|
21 |
+
device = torch.device(dev)
|
22 |
+
|
23 |
+
model = Net()
|
24 |
+
model.load_state_dict(torch.load(f"./saved_models/mnist-cnn-{latest_timestamp}.pt", map_location=device))
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
# inference function
|
28 |
+
def inference(img):
|
29 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Resize((28, 28))])
|
30 |
+
img = transform(img).unsqueeze(0) # transforms ndarray and adds batch dimension
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
output_probabilities = F.softmax(model(img), dim=1)[0] # probability prediction for each label
|
34 |
+
|
35 |
+
return {labels[i]: float(output_probabilities[i]) for i in range(len(labels))}
|
36 |
+
|
37 |
+
# Creates and launches gradio interface
|
38 |
+
labels = range(10) # 1-9 labels
|
39 |
+
outputs = gr.outputs.Label(num_top_classes=5)
|
40 |
+
gr.Interface(fn=inference, inputs='sketchpad', outputs=outputs, title="MNIST interface",
|
41 |
+
description="Draw a number from 0-9 in the box and click submit to see the model's predictions.").launch()
|