Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelWithLMHead | |
from urllib.request import urlretrieve | |
import gradio as gr | |
# Loads latest model state from Github | |
urlretrieve("https://github.com/equ1/generative_python_transformer/tree/main/GPT-python") | |
# inference function | |
def inference(inp): | |
tokenizer = AutoTokenizer.from_pretrained("GPT-python") | |
model = AutoModelWithLMHead.from_pretrained("GPT-python") | |
input_ids = tokenizer.encode(inp, return_tensors="pt") | |
beam_output = model.generate(input_ids, | |
max_length=512, | |
num_beams=10, | |
temperature=0.7, | |
no_repeat_ngram_size=5, | |
num_return_sequences=1, | |
) | |
output = [] | |
for beam in beam_output: | |
out = tokenizer.decode(beam) | |
fout = out.replace("<N>", "\n") | |
output.append(fout) | |
return '\n'.join(output) | |
desc = """ | |
Enter some Python code and click submit to see the model's autocompletion.\n | |
Best results have been observed with the prompt of \"import\".\n | |
Please note that outputs are reflective of a model trained on a measly 40 MBs of text data for | |
a single epoch of ~16 GPU hours. Given more data and training time, the autocompletion should be much stronger.\n | |
Computation will take some time. | |
""" | |
# Creates and launches gradio interface | |
gr.Interface(fn=inference, | |
inputs=gr.inputs.Textbox(lines=5, label="Input Text"), | |
outputs=gr.outputs.Textbox(), | |
title="Generative Python Transformer", | |
description=desc, | |
).launch() | |