eprakash commited on
Commit
711ffc5
1 Parent(s): 9b451a4

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Gradio
3
- emoji: 🐨
4
- colorFrom: blue
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.14.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: gradio
3
+ app_file: ct_seg_gradio.py
 
 
4
  sdk: gradio
5
+ sdk_version: 3.47.1
 
 
6
  ---
 
 
ct_seg_gradio.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+ import os
5
+ from glob import glob
6
+ from PIL import Image
7
+ import torchvision.transforms as transforms
8
+
9
+ num_rank = 200
10
+ image_prefix = "/deep/u/eprakash/AngioSeg/diffusion/ct_synthetic_60/synth/"
11
+ mask_prefix = "/deep/u/eprakash/ct/orig_masks/"
12
+ image_ids = []
13
+ mask_ids = []
14
+ img_list = "/deep/u/eprakash/ct/train_60.csv"
15
+ with open(img_list) as fp:
16
+ for line in fp:
17
+ ex = line.strip().split(",")[0]
18
+ mask_ids.append(ex.split("_")[0] + "_mask_" + ex.split("_")[1])
19
+ image_ids.append("('" + ex + "',)")
20
+ image_ids = image_ids[301:501]
21
+ mask_ids = mask_ids[301:501]
22
+ save_path = "ct_seg_ranks"
23
+
24
+ def is_int(s):
25
+ try:
26
+ int(s)
27
+ return True
28
+ except ValueError:
29
+ return False
30
+
31
+ def load_img(img_path, size=512):
32
+ img = Image.open(img_path).convert('RGB')
33
+ transform_list = [transforms.Resize((size, size))]
34
+ transform = transforms.Compose(transform_list)
35
+ img = transform(img)
36
+ return img
37
+
38
+ def find_completed_idxs(save_path=save_path):
39
+ files = os.listdir(save_path)
40
+ incorrect_files = []
41
+ if len(files) == 0:
42
+ return [-1], []
43
+ else:
44
+ file_list = []
45
+ for f in files:
46
+ f_name = int(f.split(".")[0])
47
+ with open(save_path + "/" + f) as fp:
48
+ for line in fp:
49
+ items = line.strip().split(",")
50
+ if (len(items) != 5 and f_name != -1):
51
+ incorrect_files.append(f_name)
52
+ else:
53
+ if ((not is_int(items[1].strip()) or not is_int(items[2].strip()) or not is_int(items[3].strip()) or not is_int(items[4].strip())) and f_name != -1):
54
+ incorrect_files.append(f_name)
55
+ file_list.append(f_name)
56
+ file_list = sorted(file_list)
57
+ incorrect_files = sorted(incorrect_files)
58
+ return file_list, incorrect_files
59
+
60
+ def load_next(rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example, ids=image_ids, image_prefix=image_prefix, save_path=save_path):
61
+ file_list, incorrect_files = find_completed_idxs()
62
+ print(str(file_list) + " " + str(incorrect_files))
63
+ if (int(example) not in file_list or int(example) in incorrect_files):
64
+ r = str(image_ids[int(example)]).split(",")[0].split("(")[1] + "," + rank
65
+ r_fp = open(save_path + "/" + str(int(example)) +".txt", "w")
66
+ r_fp.write(r + "\n")
67
+ r_fp.close()
68
+ file_list, incorrect_files = find_completed_idxs()
69
+ if (len(incorrect_files) != 0):
70
+ example = incorrect_files[-1]
71
+ else:
72
+ example = file_list[-1] + 1
73
+ if int(example) == num_rank:
74
+ rank = "DONE!"
75
+ example = -1
76
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
77
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
78
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
79
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
80
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
81
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
82
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
83
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
84
+ else:
85
+ rank = ""
86
+ img_1 = gr.Image(label="Sample #1", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_0.png"), interactive=False)
87
+ mask_1 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False)
88
+ img_2 = gr.Image(label="Sample #2", value=load_img(image_prefix+ str(image_ids[int(example)]) + "_synthetic_1.png"), interactive=False)
89
+ mask_2 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False)
90
+ img_3 = gr.Image(label="Sample #3", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_2.png"), interactive=False)
91
+ mask_3 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False)
92
+ img_4 = gr.Image(label="Sample #4", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_3.png"), interactive=False)
93
+ mask_4 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False)
94
+ return [rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example]
95
+
96
+ with gr.Blocks() as demo:
97
+ last_idx = -1
98
+ example = gr.Number(label="Example #. Click next for #-1 (blank starting page).", value=last_idx, interactive=False)
99
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces).")
100
+ with gr.Column(scale=1):
101
+ with gr.Row():
102
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
103
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
104
+ with gr.Row():
105
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
106
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
107
+ with gr.Row():
108
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
109
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
110
+ with gr.Row():
111
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
112
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
113
+ next_btn = gr.Button(value="Next")
114
+ next_btn.click(fn=load_next, inputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], outputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], queue=False)
115
+ demo.queue()
116
+ demo.launch(share=True)
117
+
cxr_gradio.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+ import os
5
+ from glob import glob
6
+ from PIL import Image
7
+ import torchvision.transforms as transforms
8
+
9
+ image_prefix = "/deep/u/eprakash/AngioSeg/diffusion/cxr_synthetic_data_25_no_transform/synth/"
10
+ image_ids = glob(os.path.join(image_prefix, '*' + '.png'))
11
+ image_ids = list(set([os.path.splitext(os.path.basename(p))[0].split("_")[0] for p in image_ids]))
12
+ save_path = "cxr_ranks"
13
+
14
+ def load_img(img_path, size=1024):
15
+ img = Image.open(img_path).convert('RGB')
16
+ transform_list = [transforms.Resize((size, size))]
17
+ transform = transforms.Compose(transform_list)
18
+ img = transform(img)
19
+ return img
20
+
21
+ def find_completed_idxs(save_path=save_path):
22
+ files = os.listdir(save_path)
23
+ if len(files) == 0:
24
+ return [-1]
25
+ else:
26
+ file_list = []
27
+ for f in files:
28
+ f = int(f.split(".")[0])
29
+ file_list.append(f)
30
+ file_list = sorted(file_list)
31
+ return file_list
32
+
33
+ def load_next(rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example, ids=image_ids, image_prefix=image_prefix, save_path=save_path):
34
+ if int(example) == len(image_ids) - 1:
35
+ return [None, None, None, None, None, None, None]
36
+ else:
37
+ file_list = find_completed_idxs()
38
+ if (int(example) not in file_list):
39
+ r = str(image_ids[int(example)]) + "," + rank
40
+ r_fp = open(save_path + "/" + str(int(example)) +".txt", "w")
41
+ r_fp.write(r + "\n")
42
+ r_fp.close()
43
+ file_list = find_completed_idxs()
44
+ example = file_list[-1] + 1
45
+ rank = ""
46
+ img_1 = gr.Image(label="Sample #1", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_0.png"), interactive=False)
47
+ mask_1 = gr.Image(label="Mask", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_mask_1.png"), interactive=False)
48
+ img_2 = gr.Image(label="Sample #2", value=load_img(image_prefix+ str(image_ids[int(example)]) + "_synthetic_1.png"), interactive=False)
49
+ mask_2 = gr.Image(label="Mask", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_mask_2.png"), interactive=False)
50
+ img_3 = gr.Image(label="Sample #3", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_2.png"), interactive=False)
51
+ mask_3 = gr.Image(label="Mask", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_mask_3.png"), interactive=False)
52
+ img_4 = gr.Image(label="Sample #4", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_3.png"), interactive=False)
53
+ mask_4 = gr.Image(label="Mask", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_mask_4.png"), interactive=False)
54
+ return [rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example]
55
+
56
+ with gr.Blocks() as demo:
57
+ last_idx = -1
58
+ example = gr.Number(label="Example #. Click next for #-1 (blank starting page).", value=last_idx, interactive=False)
59
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces).")
60
+ with gr.Column(scale=1):
61
+ with gr.Row():
62
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
63
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
64
+ with gr.Row():
65
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
66
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
67
+ with gr.Row():
68
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
69
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
70
+ with gr.Row():
71
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
72
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
73
+ next_btn = gr.Button(value="Next")
74
+ next_btn.click(fn=load_next, inputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], outputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], queue=False)
75
+ demo.queue()
76
+ demo.launch(share=True)
77
+
cxr_seg_gradio.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+ import os
5
+ from glob import glob
6
+ from PIL import Image
7
+ import torchvision.transforms as transforms
8
+
9
+ save_path = "cxr_seg_ranks"
10
+ num_rank = 200
11
+ image_prefix = "/deep/u/eprakash/AngioSeg/diffusion/cxr_synthetic_60/synth/"
12
+ mask_prefix = "/deep/u/eprakash/AngioSeg/diffusion/cxr_synthetic_60/orig/"
13
+ image_ids = []
14
+ img_list = "/deep/u/eprakash/cxr/train_non_25.csv"
15
+ with open(img_list) as fp:
16
+ for line in fp:
17
+ image_ids.append("('" + line.strip().split(",")[0] + "',)")
18
+ image_ids = image_ids[301:501]
19
+
20
+ def is_int(s):
21
+ try:
22
+ int(s)
23
+ return True
24
+ except ValueError:
25
+ return False
26
+
27
+ def load_img(img_path, size=512):
28
+ img = Image.open(img_path).convert('RGB')
29
+ transform_list = [transforms.Resize((size, size))]
30
+ transform = transforms.Compose(transform_list)
31
+ img = transform(img)
32
+ return img
33
+
34
+ def find_completed_idxs(save_path=save_path):
35
+ files = os.listdir(save_path)
36
+ incorrect_files = []
37
+ if len(files) == 0:
38
+ return [-1], []
39
+ else:
40
+ file_list = []
41
+ for f in files:
42
+ f_name = int(f.split(".")[0])
43
+ with open(save_path + "/" + f) as fp:
44
+ for line in fp:
45
+ items = line.strip().split(",")
46
+ if (len(items) != 5 and f_name != -1):
47
+ incorrect_files.append(f_name)
48
+ else:
49
+ if ((not is_int(items[1].strip()) or not is_int(items[2].strip()) or not is_int(items[3].strip()) or not is_int(items[4].strip())) and f_name != -1):
50
+ incorrect_files.append(f_name)
51
+ file_list.append(f_name)
52
+ file_list = sorted(file_list)
53
+ incorrect_files = sorted(incorrect_files)
54
+ return file_list, incorrect_files
55
+
56
+ def load_next(rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example, ids=image_ids, image_prefix=image_prefix, save_path=save_path):
57
+ file_list, incorrect_files = find_completed_idxs()
58
+ print(str(file_list) + " " + str(incorrect_files))
59
+ if (int(example) not in file_list or int(example) in incorrect_files):
60
+ r = str(image_ids[int(example)]).split(",")[0].split("(")[1] + "," + rank
61
+ r_fp = open(save_path + "/" + str(int(example)) +".txt", "w")
62
+ r_fp.write(r + "\n")
63
+ r_fp.close()
64
+ file_list, incorrect_files = find_completed_idxs()
65
+ if (len(incorrect_files) != 0):
66
+ example = incorrect_files[-1]
67
+ else:
68
+ example = file_list[-1] + 1
69
+ if int(example) == num_rank:
70
+ rank = "DONE!"
71
+ example = -1
72
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
73
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
74
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
75
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
76
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
77
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
78
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
79
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
80
+ else:
81
+ rank = ""
82
+ img_1 = gr.Image(label="Sample #1", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_0.png"), interactive=False)
83
+ mask_1 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
84
+ img_2 = gr.Image(label="Sample #2", value=load_img(image_prefix+ str(image_ids[int(example)]) + "_synthetic_1.png"), interactive=False)
85
+ mask_2 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
86
+ img_3 = gr.Image(label="Sample #3", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_2.png"), interactive=False)
87
+ mask_3 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
88
+ img_4 = gr.Image(label="Sample #4", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_3.png"), interactive=False)
89
+ mask_4 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
90
+ return [rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example]
91
+
92
+ with gr.Blocks() as demo:
93
+ last_idx = -1
94
+ example = gr.Number(label="Example #. Click next for #-1 (blank starting page).", value=last_idx, interactive=False)
95
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces).")
96
+ with gr.Column(scale=1):
97
+ with gr.Row():
98
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
99
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
100
+ with gr.Row():
101
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
102
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
103
+ with gr.Row():
104
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
105
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
106
+ with gr.Row():
107
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
108
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
109
+ next_btn = gr.Button(value="Next")
110
+ next_btn.click(fn=load_next, inputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], outputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], queue=False)
111
+ demo.queue()
112
+ demo.launch(share=True)
113
+
lung_seg_gradio.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+ import os
5
+ from glob import glob
6
+ from PIL import Image
7
+ import torchvision.transforms as transforms
8
+
9
+ num_rank = 200
10
+ image_prefix = "/deep/u/eprakash/AngioSeg/diffusion/lung_seg_synthetic_60/synth/"
11
+ mask_prefix = "/deep/u/eprakash/AngioSeg/diffusion/lung_seg_synthetic_60/orig/"
12
+ image_ids = []
13
+ img_list = "/deep/u/eprakash/lung_seg/train_60.csv"
14
+ with open(img_list) as fp:
15
+ for line in fp:
16
+ image_ids.append("('" + line.strip().split(",")[0] + "',)")
17
+ image_ids = image_ids[301:501]
18
+ save_path = "lung_seg_ranks"
19
+
20
+ def is_int(s):
21
+ try:
22
+ int(s)
23
+ return True
24
+ except ValueError:
25
+ return False
26
+
27
+ def load_img(img_path, size=512):
28
+ img = Image.open(img_path).convert('RGB')
29
+ transform_list = [transforms.Resize((size, size))]
30
+ transform = transforms.Compose(transform_list)
31
+ img = transform(img)
32
+ return img
33
+
34
+ def find_completed_idxs(save_path=save_path):
35
+ files = os.listdir(save_path)
36
+ incorrect_files = []
37
+ if len(files) == 0:
38
+ return [-1], []
39
+ else:
40
+ file_list = []
41
+ for f in files:
42
+ f_name = int(f.split(".")[0])
43
+ with open(save_path + "/" + f) as fp:
44
+ for line in fp:
45
+ items = line.strip().split(",")
46
+ if (len(items) != 5 and f_name != -1):
47
+ incorrect_files.append(f_name)
48
+ else:
49
+ if ((not is_int(items[1].strip()) or not is_int(items[2].strip()) or not is_int(items[3].strip()) or not is_int(items[4].strip())) and f_name != -1):
50
+ incorrect_files.append(f_name)
51
+ file_list.append(f_name)
52
+ file_list = sorted(file_list)
53
+ incorrect_files = sorted(incorrect_files)
54
+ return file_list, incorrect_files
55
+
56
+ def load_next(rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example, ids=image_ids, image_prefix=image_prefix, save_path=save_path):
57
+ file_list, incorrect_files = find_completed_idxs()
58
+ print(str(file_list) + " " + str(incorrect_files))
59
+ if (int(example) not in file_list or int(example) in incorrect_files):
60
+ r = str(image_ids[int(example)]).split(",")[0].split("(")[1] + "," + rank
61
+ r_fp = open(save_path + "/" + str(int(example)) +".txt", "w")
62
+ r_fp.write(r + "\n")
63
+ r_fp.close()
64
+ file_list, incorrect_files = find_completed_idxs()
65
+ if (len(incorrect_files) != 0):
66
+ example = incorrect_files[-1]
67
+ else:
68
+ example = file_list[-1] + 1
69
+ if int(example) == num_rank:
70
+ rank = "DONE!"
71
+ example = -1
72
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
73
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
74
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
75
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
76
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
77
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
78
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
79
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
80
+ else:
81
+ rank = ""
82
+ img_1 = gr.Image(label="Sample #1", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_0.png"), interactive=False)
83
+ mask_1 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
84
+ img_2 = gr.Image(label="Sample #2", value=load_img(image_prefix+ str(image_ids[int(example)]) + "_synthetic_1.png"), interactive=False)
85
+ mask_2 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
86
+ img_3 = gr.Image(label="Sample #3", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_2.png"), interactive=False)
87
+ mask_3 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
88
+ img_4 = gr.Image(label="Sample #4", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_3.png"), interactive=False)
89
+ mask_4 = gr.Image(label="Mask", value=load_img(mask_prefix + str(image_ids[int(example)]) + "_mask.png"), interactive=False)
90
+ return [rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example]
91
+
92
+ with gr.Blocks() as demo:
93
+ last_idx = -1
94
+ example = gr.Number(label="Example #. Click next for #-1 (blank starting page).", value=last_idx, interactive=False)
95
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces).")
96
+ with gr.Column(scale=1):
97
+ with gr.Row():
98
+ mask_1 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
99
+ img_1 = gr.Image(label="Sample #1", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
100
+ with gr.Row():
101
+ mask_2 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
102
+ img_2 = gr.Image(label="Sample #2", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
103
+ with gr.Row():
104
+ mask_3 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
105
+ img_3 = gr.Image(label="Sample #3", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
106
+ with gr.Row():
107
+ mask_4 = gr.Image(label="Mask", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
108
+ img_4 = gr.Image(label="Sample #4", value=load_img("/deep/u/eprakash/blank.jpg"), interactive=False)
109
+ next_btn = gr.Button(value="Next")
110
+ next_btn.click(fn=load_next, inputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], outputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], queue=False)
111
+ demo.queue()
112
+ demo.launch(share=True)
113
+
lung_seg_ranks/0.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ '4.5.04.955547.25.3.0.2.364123573012382.7444502808851.4',
test_gradio.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+
5
+ fp = open("/deep2/u/eprakash/MedSegDiff/data/ISIC/ISBI2016_ISIC_Part3B_Training_GroundTruth.csv")
6
+ image_ids = []
7
+ for line in fp:
8
+ image_ids.append(line.split(",")[0].split("_")[1])
9
+ image_ids = image_ids[:700]
10
+ rankings = []
11
+ def load_next(rank, img_1, img_2, img_3, img_4, img_5, example, ids=image_ids):
12
+ if example == len(image_ids):
13
+ return [None, None, None, None, None, None, None]
14
+ else:
15
+ rankings.append(str(image_ids[int(example)-1]) + "," + rank)
16
+ r_fp = open("ranks/isic_ranks_" + str(int(example) - 1) +".csv", "w")
17
+ for r in rankings:
18
+ r_fp.write(r + "\n")
19
+ r_fp.close()
20
+ example += 1
21
+ rank = ""
22
+ img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_0.jpg", interactive=False)
23
+ img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_1.jpg", interactive=False)
24
+ img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_2.jpg", interactive=False)
25
+ img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_3.jpg", interactive=False)
26
+ img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_4.jpg", interactive=False)
27
+ return [rank, img_1, img_2, img_3, img_4, img_5, example]
28
+
29
+ with gr.Blocks() as demo:
30
+ example = gr.Number(label="Example #", value=1, interactive=False)
31
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces)")
32
+ with gr.Row():
33
+ img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_0.jpg", interactive=False)
34
+ img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_1.jpg", interactive=False)
35
+ img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_2.jpg", interactive=False)
36
+ img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_3.jpg", interactive=False)
37
+ img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_4.jpg", interactive=False)
38
+ next_btn = gr.Button(value="Next")
39
+ next_btn.click(fn=load_next, inputs=[rank, img_1, img_2, img_3, img_4, img_5, example], outputs=[rank, img_1, img_2, img_3, img_4, img_5, example], queue=False)
40
+ demo.queue()
41
+ demo.launch(share=True)
42
+
43
+ fp.close()
test_gradio_2.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import time
4
+
5
+ fp = open("/deep2/u/eprakash/MedSegDiff/data/ISIC/ISBI2016_ISIC_Part3B_Training_GroundTruth.csv")
6
+ image_ids = []
7
+ for line in fp:
8
+ image_ids.append(line.split(",")[0].split("_")[1])
9
+ image_ids = image_ids[750:]
10
+ rankings = []
11
+ def load_next(rank, img_1, img_2, img_3, img_4, img_5, example, ids=image_ids):
12
+ if example == len(image_ids):
13
+ return [None, None, None, None, None, None, None]
14
+ else:
15
+ rankings.append(str(image_ids[int(example)-1]) + "," + rank)
16
+ r_fp = open("ranks_3/isic_ranks_" + str(int(example) - 1) +".csv", "w")
17
+ for r in rankings:
18
+ r_fp.write(r + "\n")
19
+ r_fp.close()
20
+ example += 1
21
+ rank = ""
22
+ img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_0.jpg", interactive=False)
23
+ img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_1.jpg", interactive=False)
24
+ img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_2.jpg", interactive=False)
25
+ img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_3.jpg", interactive=False)
26
+ img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_4.jpg", interactive=False)
27
+ return [rank, img_1, img_2, img_3, img_4, img_5, example]
28
+
29
+ with gr.Blocks() as demo:
30
+ example = gr.Number(label="Example #", value=1, interactive=False)
31
+ rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces)")
32
+ with gr.Row():
33
+ img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_0.jpg", interactive=False)
34
+ img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_1.jpg", interactive=False)
35
+ img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_2.jpg", interactive=False)
36
+ img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_3.jpg", interactive=False)
37
+ img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_4.jpg", interactive=False)
38
+ next_btn = gr.Button(value="Next")
39
+ next_btn.click(fn=load_next, inputs=[rank, img_1, img_2, img_3, img_4, img_5, example], outputs=[rank, img_1, img_2, img_3, img_4, img_5, example], queue=False)
40
+ demo.queue()
41
+ demo.launch(share=True)
42
+
43
+ fp.close()