epochs-demos's picture
Duplicate from VikramSingh178/MedicalImagingApplication
629126e
raw
history blame
5.49 kB
import streamlit as st
from PIL import Image
import torch.nn as nn
import timm
import torch
import time
import torchmetrics
from torchmetrics import F1Score,Recall,Accuracy
import torch.optim.lr_scheduler as lr_scheduler
import torchvision.models as models
import lightning.pytorch as pl
import torchvision
from lightning.pytorch.loggers import WandbLogger
import captum
import matplotlib.pyplot as plt
import json
from transformers import pipeline, set_seed
from transformers import BioGptTokenizer, BioGptForCausalLM
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
labels_path = 'labels.json'
with open(labels_path) as json_data:
idx_to_labels = json.load(json_data)
class FineTuneModel(pl.LightningModule):
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
super().__init__()
self.model_name = model_name
self.num_classes = num_classes
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.eps = eps
self.dropout_rate = dropout_rate
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
#for param in self.model.parameters():
#param.requires_grad = True
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
#self.model.classifier.requires_grad = True
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = self.loss_fn(y_hat, y)
acc = self.accuracy(y_hat.argmax(dim=1),y)
f1 = self.f1(y_hat.argmax(dim=1),y)
recall = self.recall(y_hat.argmax(dim=1),y)
self.log('train_loss', loss,on_step=False,on_epoch=True)
self.log('train_acc', acc,on_step=False,on_epoch = True)
self.log('train_f1',f1,on_step=False,on_epoch=True)
self.log('train_recall',recall,on_step=False,on_epoch=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = self.loss_fn(y_hat, y)
acc = self.accuracy(y_hat.argmax(dim=1),y)
f1 = self.f1(y_hat.argmax(dim=1),y)
recall = self.recall(y_hat.argmax(dim=1),y)
self.log('val_loss', loss,on_step=False,on_epoch=True)
self.log('val_acc', acc,on_step=False,on_epoch=True)
self.log('val_f1',f1,on_step=False,on_epoch=True)
self.log('val_recall',recall,on_step=False,on_epoch=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
#load model
st.markdown("<h1 style='text-align: center; '>Chest Xray Diagnosis</h1>",unsafe_allow_html=True)
# Display a file uploader widget for the user to upload an image
uploaded_file = st.file_uploader("Choose an Chest XRay Image file", type=["jpg", "jpeg", "png"])
# Load the uploaded image, or display emojis if no file was uploaded
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Diagnosis',width=224, use_column_width=True)
model = timm.create_model(model_name='efficientnet_b2', pretrained=True,num_classes=4)
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
transform = timm.data.create_transform(**data_cfg)
model_transforms = torchvision.transforms.Compose([transform])
transformed_image = model_transforms(image)
xray_model = torch.load('models/timm_xray_model.pth')
xray_model.eval()
with torch.inference_mode():
with st.progress(100):
prediction = torch.nn.functional.softmax(xray_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
prediction_score, pred_label_idx = torch.topk(prediction, 1)
pred_label_idx.squeeze_()
predicted_label = idx_to_labels[str(pred_label_idx.item())]
st.write( f'Predicted Label: {predicted_label}')
if st.button('Know More'):
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
with st.spinner('Generating Text'):
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
else:
st.success("Please upload an image file ⚕️")