Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import torch.nn as nn | |
import timm | |
import torch | |
import time | |
import torchmetrics | |
from torchmetrics import F1Score,Recall,Accuracy | |
import torch.optim.lr_scheduler as lr_scheduler | |
import torchvision.models as models | |
import lightning.pytorch as pl | |
import torchvision | |
from lightning.pytorch.loggers import WandbLogger | |
import captum | |
import matplotlib.pyplot as plt | |
import json | |
from transformers import pipeline, set_seed | |
from transformers import BioGptTokenizer, BioGptForCausalLM | |
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") | |
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") | |
labels_path = 'labels.json' | |
with open(labels_path) as json_data: | |
idx_to_labels = json.load(json_data) | |
class FineTuneModel(pl.LightningModule): | |
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps): | |
super().__init__() | |
self.model_name = model_name | |
self.num_classes = num_classes | |
self.learning_rate = learning_rate | |
self.beta1 = beta1 | |
self.beta2 = beta2 | |
self.eps = eps | |
self.dropout_rate = dropout_rate | |
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes) | |
self.loss_fn = nn.CrossEntropyLoss() | |
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes) | |
self.recall = Recall(task='multiclass', num_classes=self.num_classes) | |
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes) | |
#for param in self.model.parameters(): | |
#param.requires_grad = True | |
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes)) | |
#self.model.classifier.requires_grad = True | |
def forward(self, x): | |
return self.model(x) | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.model(x) | |
loss = self.loss_fn(y_hat, y) | |
acc = self.accuracy(y_hat.argmax(dim=1),y) | |
f1 = self.f1(y_hat.argmax(dim=1),y) | |
recall = self.recall(y_hat.argmax(dim=1),y) | |
self.log('train_loss', loss,on_step=False,on_epoch=True) | |
self.log('train_acc', acc,on_step=False,on_epoch = True) | |
self.log('train_f1',f1,on_step=False,on_epoch=True) | |
self.log('train_recall',recall,on_step=False,on_epoch=True) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.model(x) | |
loss = self.loss_fn(y_hat, y) | |
acc = self.accuracy(y_hat.argmax(dim=1),y) | |
f1 = self.f1(y_hat.argmax(dim=1),y) | |
recall = self.recall(y_hat.argmax(dim=1),y) | |
self.log('val_loss', loss,on_step=False,on_epoch=True) | |
self.log('val_acc', acc,on_step=False,on_epoch=True) | |
self.log('val_f1',f1,on_step=False,on_epoch=True) | |
self.log('val_recall',recall,on_step=False,on_epoch=True) | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps) | |
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) | |
return {'optimizer': optimizer, 'lr_scheduler': scheduler} | |
#load model | |
st.markdown("<h1 style='text-align: center; '>Chest Xray Diagnosis</h1>",unsafe_allow_html=True) | |
# Display a file uploader widget for the user to upload an image | |
uploaded_file = st.file_uploader("Choose an Chest XRay Image file", type=["jpg", "jpeg", "png"]) | |
# Load the uploaded image, or display emojis if no file was uploaded | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Diagnosis',width=224, use_column_width=True) | |
model = timm.create_model(model_name='efficientnet_b2', pretrained=True,num_classes=4) | |
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg) | |
transform = timm.data.create_transform(**data_cfg) | |
model_transforms = torchvision.transforms.Compose([transform]) | |
transformed_image = model_transforms(image) | |
xray_model = torch.load('models/timm_xray_model.pth') | |
xray_model.eval() | |
with torch.inference_mode(): | |
with st.progress(100): | |
prediction = torch.nn.functional.softmax(xray_model(transformed_image.unsqueeze(dim=0))[0], dim=0) | |
prediction_score, pred_label_idx = torch.topk(prediction, 1) | |
pred_label_idx.squeeze_() | |
predicted_label = idx_to_labels[str(pred_label_idx.item())] | |
st.write( f'Predicted Label: {predicted_label}') | |
if st.button('Know More'): | |
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer) | |
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:" | |
with st.spinner('Generating Text'): | |
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1) | |
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text']) | |
else: | |
st.success("Please upload an image file ⚕️") | |