epochs-demos's picture
Update app.py
0fceb57
raw
history blame
1.73 kB
import gradio as gr
import base64
from fastai.vision.all import *
learn=load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Read the image file and encode it as base64
with open("./1001epochs.png", "rb") as f:
image_data = f.read()
image_base64 = base64.b64encode(image_data).decode("utf-8")
allow_flagging = "never"
title = f"""
<h2 style="background-image: linear-gradient(to right, #3A5FCD, #87CEFA); -webkit-background-clip: text;
-webkit-text-fill-color: transparent; text-align: center;">
Emergency Vehicle Classifier
</h2>
"""
description = f"""
<div style="display: flex; align-items: center; justify-content: center; flex-direction: column;">
<p style="font-size: 18px; color: #4AAAFF; text-align: center;">
Simply upload a photo and let our sophisticated AI system determine the specific type of emergency vehicle depicted.
</p>
<div style="display: flex; align-items: center; margin-bottom: 0px;">
<img src='data:image/jpeg;base64,{image_base64}' width='50' height='30' style="margin-right: 5px;"/>
<p style="font-size: 14px; color: #555;">
Disclaimer: The purpose of this application is solely for demonstration. 1001epochs does not claim ownership for the results. Contact: contact@1001epochs.co.uk for full solution.
</p>
</div>
</div>
"""
interpretation='default'
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, interpretation=interpretation, description=description).launch()