Spaces:
Sleeping
Sleeping
# +++ | |
import os | |
import uuid | |
import joblib | |
import json | |
# IMPORTANT: I already installed the package "gradio" in my current Virtual Environment (VEnvDSDIL_gpu_Py3.12) as: pip install -q gradio_client | |
# Do NOT install "gradio_client" package again in Anaconda otherwise it will mess up the package. | |
import gradio as gr | |
import pandas as pd | |
# must install the package "huggingface_hub" first in the current python Virtual Environment, with pip, not with conda, as follows | |
# pip install huggingface_hub | |
# i.e., in the command line interface within the activated Virtual Environment: | |
# (VEnvDSDIL_gpu_Py3.12) epalvarez@DSDILmStation01:~ $ pip install huggingface_hub | |
from huggingface_hub import CommitScheduler | |
from pathlib import Path | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
# Scheduler will log every 2 API calls: | |
# scheduler = CommitScheduler( | |
# repo_id="machine-failure-logs", | |
# repo_type="dataset", | |
# folder_path=log_folder, | |
# path_in_repo="data", | |
# every=2 | |
# ) | |
machine_failure_predictor = joblib.load('model_mf.joblib') | |
air_temperature_input = gr.Number(label='Air temperature [K]') | |
process_temperature_input = gr.Number(label='Process temperature [K]') | |
rotational_speed_input = gr.Number(label='Rotational speed [rpm]') | |
torque_input = gr.Number(label='Torque [Nm]') | |
tool_wear_input = gr.Number(label='Tool wear [min]') | |
type_input = gr.Dropdown( | |
['L', 'M', 'H'], | |
label='Type' | |
) | |
model_output = gr.Label(label="Machine failure") | |
def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): | |
sample = { | |
'Air temperature [K]': air_temperature, | |
'Process temperature [K]': process_temperature, | |
'Rotational speed [rpm]': rotational_speed, | |
'Torque [Nm]': torque, | |
'Tool wear [min]': tool_wear, | |
'Type': type | |
} | |
data_point = pd.DataFrame([sample]) | |
prediction = machine_failure_predictor.predict(data_point).tolist() | |
# Each time we get a prediction we will determine if we should log it to a hugging_face dataset according to the schedule definition outside this function | |
# with scheduler.lock: | |
# with log_file.open("a") as f: | |
# f.write(json.dumps( | |
# { | |
# 'Air temperature [K]': air_temperature, | |
# 'Process temperature [K]': process_temperature, | |
# 'Rotational speed [rpm]': rotational_speed, | |
# 'Torque [Nm]': torque, | |
# 'Tool wear [min]': tool_wear, | |
# 'Type': type, | |
# 'prediction': prediction[0] | |
# } | |
# )) | |
# f.write("\n") | |
return prediction[0] | |
demo = gr.Interface( | |
fn=predict_machine_failure, | |
inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, | |
torque_input, tool_wear_input, type_input], | |
outputs=model_output, | |
title="Machine Failure Predictor", | |
description="This API allows you to predict the machine failure status of an equipment", | |
allow_flagging="auto", | |
concurrency_limit=8 | |
) | |
demo.queue() | |
demo.launch(share=False) |