Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo
|
7 |
demo.launch()
|
|
|
1 |
+
from warnings import filterwarnings
|
2 |
+
filterwarnings('ignore')
|
3 |
+
|
4 |
+
import os
|
5 |
+
import uuid
|
6 |
+
import joblib
|
7 |
+
import json
|
8 |
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
from huggingface_hub import CommitScheduler
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
# Configure the logging functionality
|
14 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
15 |
+
log_folder = log_file.parent
|
16 |
+
|
17 |
+
repo_id = "operand-logs"
|
18 |
+
|
19 |
+
# Create a commit scheduler
|
20 |
+
scheduler = CommitScheduler(
|
21 |
+
repo_id=repo_id,
|
22 |
+
repo_type="dataset",
|
23 |
+
folder_path=log_folder,
|
24 |
+
path_in_repo="data",
|
25 |
+
every=2
|
26 |
+
)
|
27 |
+
|
28 |
+
# # Load the saved model
|
29 |
+
# #insurance_charge_predictor = joblib.load('model.joblib')
|
30 |
+
|
31 |
+
# # Define the input features
|
32 |
+
|
33 |
+
# #numeric_features = ['age', 'bmi', 'children']
|
34 |
+
# #categorical_features = ['sex', 'smoker', 'region']
|
35 |
+
|
36 |
+
# age_input = gr.Number(label="Age")
|
37 |
+
# bmi_input = gr.Number(label="BMI")
|
38 |
+
# children_input = gr.Number(label="Children")
|
39 |
+
|
40 |
+
# # sex: ['female' 'male']
|
41 |
+
# # smoker: ['yes' 'no']
|
42 |
+
# # region: ['southwest' 'southeast' 'northwest' 'northeast']
|
43 |
+
|
44 |
+
# sex_input = gr.Dropdown(['female','male'],label='Sex')
|
45 |
+
# smoker_input = gr.Dropdown(['yes','no'],label='Smoker')
|
46 |
+
# region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'],label='Region')
|
47 |
+
|
48 |
+
# model_output = gr.Label(label="charges")
|
49 |
+
|
50 |
+
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
|
51 |
+
# the functions runs when 'Submit' is clicked or when a API request is made
|
52 |
+
|
53 |
+
def dprocess(age, bmi, children, sex, smoker, region):
|
54 |
+
|
55 |
+
#Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region'], dtype='object')
|
56 |
+
|
57 |
+
sample = {
|
58 |
+
'age': age,
|
59 |
+
'sex': sex,
|
60 |
+
'bmi': bmi,
|
61 |
+
'children': children,
|
62 |
+
'smoker': smoker,
|
63 |
+
'region': region
|
64 |
+
}
|
65 |
+
|
66 |
+
data_point = pd.DataFrame([sample])
|
67 |
+
|
68 |
+
prediction = insurance_charge_predictor.predict(data_point).tolist()
|
69 |
+
|
70 |
+
with scheduler.lock:
|
71 |
+
with log_file.open("a") as f:
|
72 |
+
f.write(json.dumps(
|
73 |
+
{
|
74 |
+
'age': age,
|
75 |
+
'sex': sex,
|
76 |
+
'bmi': bmi,
|
77 |
+
'children': children,
|
78 |
+
'smoker': smoker,
|
79 |
+
'region': region,
|
80 |
+
'prediction': prediction[0]
|
81 |
+
}
|
82 |
+
))
|
83 |
+
f.write("\n")
|
84 |
+
|
85 |
+
return prediction[0]
|
86 |
+
|
87 |
+
# Set-up the Gradio UI
|
88 |
+
textbox = gr.Textbox(label='Command:')
|
89 |
+
company = gr.Radio(label='Company:',
|
90 |
+
choices=["aws", "google", "IBM", "Meta", "msft"],
|
91 |
+
value="aws")
|
92 |
|
93 |
+
# Create Gradio interface
|
94 |
+
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|
95 |
+
demo = gr.Interface(fn=dprocess,
|
96 |
+
inputs=[textbox, company],
|
97 |
+
outputs="text",
|
98 |
+
title="operand data automation CLI",
|
99 |
+
description="",
|
100 |
+
theme=gr.themes.Soft())
|
101 |
|
102 |
+
demo.queue()
|
103 |
demo.launch()
|