envoycan commited on
Commit
6d40d0a
·
1 Parent(s): 8a9f1fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -28
app.py CHANGED
@@ -1,52 +1,32 @@
1
  from multilingual_translation import text_to_text_generation
2
- from utils import lang_ids, data_scraping
3
  import gradio as gr
4
 
5
- lang_list = list(lang_ids.keys())
6
  model_list = data_scraping()
7
 
8
- def multilingual_translate(
9
- prompt: str,
10
- model_id: str,
11
- target_lang: str
12
- ):
13
-
14
  return text_to_text_generation(
15
  prompt=prompt,
16
  model_id=model_id,
17
  device='cpu',
18
- target_lang=lang_ids[target_lang]
19
- )
20
-
21
 
22
  inputs = [
23
  gr.Textbox(lines=4, value="Hello world!", label="Input Text"),
24
  gr.Dropdown(model_list, value="facebook/m2m100_418M", label="Model"),
25
- gr.Dropdown(lang_list, value="Turkish", label="Target Language"),
26
  ]
27
 
28
  output = gr.outputs.Textbox(label="Output Text")
29
 
30
  examples = [
31
- [
32
- "Hello world!",
33
- "facebook/m2m100_418M",
34
- "Turkish",
35
- ],
36
- [
37
- "Omar ve Merve çok iyi arkadaşlar.",
38
- "facebook/m2m100_418M",
39
- "Spanish",
40
- ],
41
- [
42
- "Hugging Face is a great company.",
43
- "facebook/m2m100_418M",
44
- "French",
45
- ]
46
  ]
47
 
48
  title = "Beyond English-Centric Multilingual Machine Translation"
49
-
50
  description = "M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository."
51
 
52
  app = gr.Interface(
 
1
  from multilingual_translation import text_to_text_generation
2
+ from utils import data_scraping
3
  import gradio as gr
4
 
 
5
  model_list = data_scraping()
6
 
7
+ def multilingual_translate(prompt: str, model_id: str):
8
+ target_lang = "en" # English language code
 
 
 
 
9
  return text_to_text_generation(
10
  prompt=prompt,
11
  model_id=model_id,
12
  device='cpu',
13
+ target_lang=target_lang
14
+ )
 
15
 
16
  inputs = [
17
  gr.Textbox(lines=4, value="Hello world!", label="Input Text"),
18
  gr.Dropdown(model_list, value="facebook/m2m100_418M", label="Model"),
 
19
  ]
20
 
21
  output = gr.outputs.Textbox(label="Output Text")
22
 
23
  examples = [
24
+ ["Hello world!", "facebook/m2m100_418M"],
25
+ ["Omar ve Merve çok iyi arkadaşlar.", "facebook/m2m100_418M"],
26
+ ["Hugging Face is a great company.", "facebook/m2m100_418M"]
 
 
 
 
 
 
 
 
 
 
 
 
27
  ]
28
 
29
  title = "Beyond English-Centric Multilingual Machine Translation"
 
30
  description = "M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository."
31
 
32
  app = gr.Interface(