Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,882 +7,713 @@ import numpy as np
|
|
| 7 |
from datetime import datetime
|
| 8 |
import io
|
| 9 |
|
| 10 |
-
# Page
|
| 11 |
st.set_page_config(
|
| 12 |
page_title="FinanceGPT Analyzer",
|
| 13 |
page_icon="📊",
|
| 14 |
-
layout="wide"
|
| 15 |
-
initial_sidebar_state="expanded"
|
| 16 |
)
|
| 17 |
|
| 18 |
-
# Custom CSS
|
| 19 |
st.markdown("""
|
| 20 |
<style>
|
| 21 |
.metric-card {
|
| 22 |
-
background: linear-gradient(
|
| 23 |
padding: 1rem;
|
| 24 |
border-radius: 10px;
|
| 25 |
color: white;
|
| 26 |
text-align: center;
|
| 27 |
-
margin: 0.5rem 0;
|
| 28 |
}
|
| 29 |
.insight-box {
|
| 30 |
background: #f8f9fa;
|
| 31 |
-
border-left: 4px solid #
|
| 32 |
padding: 1rem;
|
| 33 |
margin: 1rem 0;
|
| 34 |
-
border-radius: 5px;
|
| 35 |
}
|
| 36 |
-
.risk-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
.stTab {
|
| 40 |
-
background-color: white;
|
| 41 |
-
}
|
| 42 |
-
.chat-message {
|
| 43 |
padding: 1rem;
|
| 44 |
-
margin:
|
| 45 |
-
border-radius: 10px;
|
| 46 |
-
background-color: #f0f2f6;
|
| 47 |
}
|
| 48 |
</style>
|
| 49 |
""", unsafe_allow_html=True)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
'
|
| 61 |
-
'
|
| 62 |
-
|
| 63 |
-
'
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
'
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
'
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
current_liabilities = get_account_value(df, 'Total Short-term Debt', '2024')
|
| 147 |
-
total_debt = get_account_value(df, 'Total Debt', '2024')
|
| 148 |
-
total_equity = get_account_value(df, 'Total Equity', '2024')
|
| 149 |
-
cogs = get_account_value(df, 'Cost of Goods Sold', '2024')
|
| 150 |
-
operating_result = get_account_value(df, 'Operating Result', '2024')
|
| 151 |
-
|
| 152 |
-
# Calculate ratios with error handling
|
| 153 |
-
ratios['Revenue Growth'] = ((revenue - revenue_prev) / revenue_prev * 100) if revenue_prev != 0 else 0
|
| 154 |
-
ratios['Net Margin'] = (net_income / revenue * 100) if revenue != 0 else 0
|
| 155 |
-
ratios['Operating Margin'] = (operating_result / revenue * 100) if revenue != 0 else 0
|
| 156 |
-
ratios['ROA'] = (net_income / total_assets * 100) if total_assets != 0 else 0
|
| 157 |
-
ratios['ROE'] = (net_income / total_equity * 100) if total_equity != 0 else 0
|
| 158 |
-
ratios['Current Ratio'] = (current_assets / current_liabilities) if current_liabilities != 0 else 0
|
| 159 |
-
ratios['Debt to Equity'] = (total_debt / total_equity) if total_equity != 0 else 0
|
| 160 |
-
ratios['Debt Ratio'] = (total_debt / total_assets * 100) if total_assets != 0 else 0
|
| 161 |
-
ratios['Gross Margin'] = ((revenue - cogs) / revenue * 100) if revenue != 0 else 0
|
| 162 |
-
ratios['Asset Turnover'] = (revenue / total_assets) if total_assets != 0 else 0
|
| 163 |
-
|
| 164 |
-
return ratios
|
| 165 |
-
|
| 166 |
-
def get_ratio_grade(ratio_name, value):
|
| 167 |
-
grades = {
|
| 168 |
-
'Revenue Growth': {'A': 20, 'B': 10, 'C': 5, 'D': 0},
|
| 169 |
-
'Net Margin': {'A': 15, 'B': 10, 'C': 5, 'D': 0},
|
| 170 |
-
'Operating Margin': {'A': 20, 'B': 15, 'C': 10, 'D': 5},
|
| 171 |
-
'ROA': {'A': 15, 'B': 10, 'C': 5, 'D': 0},
|
| 172 |
-
'ROE': {'A': 20, 'B': 15, 'C': 10, 'D': 0},
|
| 173 |
-
'Current Ratio': {'A': 2.0, 'B': 1.5, 'C': 1.2, 'D': 1.0},
|
| 174 |
-
'Debt Ratio': {'A': 30, 'B': 50, 'C': 70, 'D': 100},
|
| 175 |
-
'Debt to Equity': {'A': 0.5, 'B': 1.0, 'C': 1.5, 'D': 2.0},
|
| 176 |
-
'Gross Margin': {'A': 50, 'B': 30, 'C': 20, 'D': 10}
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
if ratio_name not in grades:
|
| 180 |
-
return 'N/A'
|
| 181 |
-
|
| 182 |
-
thresholds = grades[ratio_name]
|
| 183 |
-
if ratio_name in ['Debt Ratio', 'Debt to Equity']: # Lower is better
|
| 184 |
-
if value <= thresholds['A']: return 'A'
|
| 185 |
-
elif value <= thresholds['B']: return 'B'
|
| 186 |
-
elif value <= thresholds['C']: return 'C'
|
| 187 |
-
else: return 'D'
|
| 188 |
-
else: # Higher is better
|
| 189 |
-
if value >= thresholds['A']: return 'A'
|
| 190 |
-
elif value >= thresholds['B']: return 'B'
|
| 191 |
-
elif value >= thresholds['C']: return 'C'
|
| 192 |
-
else: return 'D'
|
| 193 |
-
|
| 194 |
-
def generate_insights(df, ratios):
|
| 195 |
-
insights = []
|
| 196 |
-
|
| 197 |
-
revenue_growth = ratios['Revenue Growth']
|
| 198 |
-
if revenue_growth > 400:
|
| 199 |
-
insights.append(("🚀 Explosive Growth", f"Revenue grew {revenue_growth:.0f}% - exceptional performance!", "success"))
|
| 200 |
-
elif revenue_growth > 50:
|
| 201 |
-
insights.append(("📈 Strong Growth", f"Revenue increased {revenue_growth:.1f}% year-over-year", "success"))
|
| 202 |
-
|
| 203 |
-
if ratios['Current Ratio'] < 1.0:
|
| 204 |
-
insights.append(("⚠️ Liquidity Risk", "Current ratio below 1.0 indicates potential cash flow issues", "warning"))
|
| 205 |
-
elif ratios['Current Ratio'] < 1.5:
|
| 206 |
-
insights.append(("⚠️ Liquidity Watch", f"Current ratio of {ratios['Current Ratio']:.1f} is below optimal", "warning"))
|
| 207 |
-
|
| 208 |
-
if ratios['Debt Ratio'] > 70:
|
| 209 |
-
insights.append(("🔴 High Leverage", "Debt ratio above 70% suggests high financial risk", "error"))
|
| 210 |
-
elif ratios['Debt Ratio'] > 50:
|
| 211 |
-
insights.append(("⚠️ Moderate Leverage", f"Debt ratio of {ratios['Debt Ratio']:.1f}% requires monitoring", "warning"))
|
| 212 |
-
|
| 213 |
-
# Customer receivables analysis
|
| 214 |
-
receivables = get_account_value(df, 'Customer Receivables', '2024')
|
| 215 |
-
revenue = get_account_value(df, 'Sales Revenue', '2024')
|
| 216 |
-
if revenue > 0 and (receivables / revenue) > 0.2:
|
| 217 |
-
insights.append(("💳 Receivables Risk", f"Customer receivables is {receivables/1000000:.1f}M NOK ({receivables/revenue*100:.0f}% of revenue)", "warning"))
|
| 218 |
-
|
| 219 |
-
if ratios['Net Margin'] > 20:
|
| 220 |
-
insights.append(("💰 Excellent Profitability", f"Net margin of {ratios['Net Margin']:.1f}% shows excellent profitability", "success"))
|
| 221 |
-
elif ratios['Net Margin'] > 10:
|
| 222 |
-
insights.append(("💰 Good Profitability", f"Net margin of {ratios['Net Margin']:.1f}% shows good profitability", "success"))
|
| 223 |
-
|
| 224 |
-
# Turnaround story
|
| 225 |
-
net_prev = get_account_value(df, 'Annual Result', '2023')
|
| 226 |
-
net_current = get_account_value(df, 'Annual Result', '2024')
|
| 227 |
-
if net_prev < 0 and net_current > 0:
|
| 228 |
-
insights.append(("🔄 Successful Turnaround", "Company moved from loss to profit - remarkable recovery!", "success"))
|
| 229 |
-
|
| 230 |
-
return insights
|
| 231 |
-
|
| 232 |
-
# Sidebar navigation
|
| 233 |
-
st.sidebar.title("📊 FinanceGPT Analyzer")
|
| 234 |
-
page = st.sidebar.selectbox("Choose Analysis", [
|
| 235 |
-
"🏠 Dashboard",
|
| 236 |
-
"💰 Income Analysis",
|
| 237 |
-
"🏛️ Balance Sheet",
|
| 238 |
-
"💸 Cash Flow",
|
| 239 |
-
"📊 Financial Ratios",
|
| 240 |
-
"🤖 AI Assistant"
|
| 241 |
-
])
|
| 242 |
-
|
| 243 |
-
# File upload
|
| 244 |
-
st.sidebar.subheader("📁 Data Upload")
|
| 245 |
-
uploaded_file = st.sidebar.file_uploader("Upload CSV file", type=['csv'])
|
| 246 |
-
use_sample = st.sidebar.button("Use Sample Data")
|
| 247 |
-
|
| 248 |
-
# Load data
|
| 249 |
-
if uploaded_file is not None:
|
| 250 |
-
try:
|
| 251 |
-
df = pd.read_csv(uploaded_file)
|
| 252 |
-
st.sidebar.success("✅ File uploaded successfully!")
|
| 253 |
-
# Validate required columns
|
| 254 |
-
required_cols = ['Account_Name_English', '2024_Amount_NOK', '2023_Amount_NOK']
|
| 255 |
-
if not all(col in df.columns for col in required_cols):
|
| 256 |
-
st.sidebar.error("❌ CSV must have columns: Account_Name_English, 2024_Amount_NOK, 2023_Amount_NOK")
|
| 257 |
-
df = get_sample_data()
|
| 258 |
-
except Exception as e:
|
| 259 |
-
st.sidebar.error(f"❌ Error reading file: {str(e)}")
|
| 260 |
-
df = get_sample_data()
|
| 261 |
-
elif use_sample:
|
| 262 |
-
df = get_sample_data()
|
| 263 |
-
st.sidebar.success("✅ Sample data loaded!")
|
| 264 |
-
else:
|
| 265 |
-
df = get_sample_data()
|
| 266 |
-
|
| 267 |
-
# Calculate ratios and insights
|
| 268 |
-
ratios = calculate_ratios(df)
|
| 269 |
-
insights = generate_insights(df, ratios)
|
| 270 |
-
|
| 271 |
-
# Main content based on selected page
|
| 272 |
-
if page == "🏠 Dashboard":
|
| 273 |
-
st.title("📊 FinanceGPT Analyzer Dashboard")
|
| 274 |
-
|
| 275 |
-
# Key metrics
|
| 276 |
-
col1, col2, col3, col4 = st.columns(4)
|
| 277 |
-
|
| 278 |
-
with col1:
|
| 279 |
-
revenue = get_account_value(df, 'Sales Revenue', '2024')
|
| 280 |
-
revenue_prev = get_account_value(df, 'Sales Revenue', '2023')
|
| 281 |
-
growth = ((revenue - revenue_prev) / revenue_prev * 100) if revenue_prev != 0 else 0
|
| 282 |
-
st.metric("💰 Revenue", f"{revenue/1000000:.1f}M NOK", f"{growth:+.0f}%")
|
| 283 |
-
|
| 284 |
-
with col2:
|
| 285 |
-
net_income = get_account_value(df, 'Annual Result', '2024')
|
| 286 |
-
net_income_prev = get_account_value(df, 'Annual Result', '2023')
|
| 287 |
-
profit_change = net_income - net_income_prev
|
| 288 |
-
st.metric("📈 Net Profit", f"{net_income/1000000:.1f}M NOK", f"{profit_change/1000000:+.1f}M NOK")
|
| 289 |
-
|
| 290 |
-
with col3:
|
| 291 |
-
assets = get_account_value(df, 'TOTAL ASSETS', '2024')
|
| 292 |
-
assets_prev = get_account_value(df, 'TOTAL ASSETS', '2023')
|
| 293 |
-
asset_growth = ((assets - assets_prev) / assets_prev * 100) if assets_prev != 0 else 0
|
| 294 |
-
st.metric("🏛️ Total Assets", f"{assets/1000000:.1f}M NOK", f"{asset_growth:+.0f}%")
|
| 295 |
-
|
| 296 |
-
with col4:
|
| 297 |
-
cash = get_account_value(df, 'Cash at End of Period', '2024')
|
| 298 |
-
cash_prev = get_account_value(df, 'Cash at Beginning of Period', '2024')
|
| 299 |
-
cash_change = ((cash - cash_prev) / cash_prev * 100) if cash_prev != 0 else 0
|
| 300 |
-
st.metric("💸 Cash", f"{cash/1000000:.1f}M NOK", f"{cash_change:+.0f}%")
|
| 301 |
-
|
| 302 |
-
# Charts section
|
| 303 |
-
col1, col2 = st.columns(2)
|
| 304 |
-
|
| 305 |
-
with col1:
|
| 306 |
-
st.subheader("📈 Revenue vs Profit Trend")
|
| 307 |
-
trend_data = pd.DataFrame({
|
| 308 |
-
'Year': ['2023', '2024'],
|
| 309 |
-
'Revenue': [revenue_prev/1000000, revenue/1000000],
|
| 310 |
-
'Net Income': [net_income_prev/1000000, net_income/1000000]
|
| 311 |
-
})
|
| 312 |
-
|
| 313 |
-
fig = px.line(trend_data, x='Year', y=['Revenue', 'Net Income'],
|
| 314 |
-
title="Revenue vs Net Income (Million NOK)")
|
| 315 |
-
fig.update_layout(height=400)
|
| 316 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
fig = go.Figure(
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
theta=categories,
|
| 326 |
fill='toself',
|
| 327 |
-
name='
|
|
|
|
|
|
|
| 328 |
))
|
|
|
|
| 329 |
fig.update_layout(
|
| 330 |
-
polar=dict(
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
)
|
| 333 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 334 |
-
|
| 335 |
-
# Second row of charts
|
| 336 |
-
col1, col2 = st.columns(2)
|
| 337 |
-
|
| 338 |
-
with col1:
|
| 339 |
-
st.subheader("🏛️ Asset vs Liability Structure")
|
| 340 |
-
structure_data = pd.DataFrame({
|
| 341 |
-
'Category': ['Total Assets', 'Total Debt', 'Total Equity'],
|
| 342 |
-
'Amount': [assets/1000000, get_account_value(df, 'Total Debt', '2024')/1000000, get_account_value(df, 'Total Equity', '2024')/1000000]
|
| 343 |
-
})
|
| 344 |
-
|
| 345 |
-
fig = px.bar(structure_data, x='Category', y='Amount',
|
| 346 |
-
title="Financial Structure (Million NOK)")
|
| 347 |
-
fig.update_traces(marker_color=['#3498db', '#e74c3c', '#2ecc71'])
|
| 348 |
-
fig.update_layout(height=400)
|
| 349 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 350 |
-
|
| 351 |
-
with col2:
|
| 352 |
-
st.subheader("💸 Cash Flow Overview")
|
| 353 |
-
# Create sample cash flow data
|
| 354 |
-
operating_cf = get_account_value(df, 'Net Cash Flow from Operating Activities', '2024')
|
| 355 |
-
investing_cf = get_account_value(df, 'Net Cash Flow from Investing Activities', '2024')
|
| 356 |
-
financing_cf = get_account_value(df, 'Net Cash Flow from Financing Activities', '2024')
|
| 357 |
-
|
| 358 |
-
categories = ['Operating', 'Investing', 'Financing']
|
| 359 |
-
values = [operating_cf/1000000, investing_cf/1000000, financing_cf/1000000]
|
| 360 |
-
colors = ['green' if v > 0 else 'red' for v in values]
|
| 361 |
-
|
| 362 |
-
fig = go.Figure(data=[go.Bar(x=categories, y=values, marker_color=colors)])
|
| 363 |
-
fig.update_layout(title="Cash Flow by Activity (Million NOK)", height=400)
|
| 364 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 365 |
-
|
| 366 |
-
# Insights section
|
| 367 |
-
st.subheader("🎯 Key Insights")
|
| 368 |
-
for title, message, type in insights:
|
| 369 |
-
if type == "success":
|
| 370 |
-
st.success(f"**{title}**: {message}")
|
| 371 |
-
elif type == "warning":
|
| 372 |
-
st.warning(f"**{title}**: {message}")
|
| 373 |
-
else:
|
| 374 |
-
st.error(f"**{title}**: {message}")
|
| 375 |
-
|
| 376 |
-
elif page == "💰 Income Analysis":
|
| 377 |
-
st.title("💰 Income Statement Analysis")
|
| 378 |
-
|
| 379 |
-
# Income statement data
|
| 380 |
-
income_data = df[df['Statement_Type'] == 'Income Statement'].copy()
|
| 381 |
-
|
| 382 |
-
col1, col2 = st.columns(2)
|
| 383 |
-
|
| 384 |
-
with col1:
|
| 385 |
-
st.subheader("📊 Revenue Breakdown")
|
| 386 |
-
revenue = get_account_value(df, 'Sales Revenue', '2024')
|
| 387 |
-
cogs = get_account_value(df, 'Cost of Goods Sold', '2024')
|
| 388 |
-
other_opex = get_account_value(df, 'Other Operating Expenses', '2024')
|
| 389 |
-
payroll = get_account_value(df, 'Payroll Expenses', '2024')
|
| 390 |
-
|
| 391 |
-
breakdown = pd.DataFrame({
|
| 392 |
-
'Category': ['Gross Profit', 'COGS', 'Payroll', 'Other OpEx'],
|
| 393 |
-
'Amount': [revenue - cogs, cogs, payroll, other_opex]
|
| 394 |
-
})
|
| 395 |
-
|
| 396 |
-
fig = px.pie(breakdown, values='Amount', names='Category',
|
| 397 |
-
title="Revenue Allocation (2024)")
|
| 398 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 399 |
-
|
| 400 |
-
with col2:
|
| 401 |
-
st.subheader("📈 Profitability Metrics")
|
| 402 |
-
metrics_df = pd.DataFrame({
|
| 403 |
-
'Metric': ['Gross Margin', 'Net Margin', 'ROA', 'ROE'],
|
| 404 |
-
'Value': [ratios['Gross Margin'], ratios['Net Margin'],
|
| 405 |
-
ratios['ROA'], ratios['ROE']],
|
| 406 |
-
'Grade': [get_ratio_grade('Gross Margin', ratios['Gross Margin']),
|
| 407 |
-
get_ratio_grade('Net Margin', ratios['Net Margin']),
|
| 408 |
-
get_ratio_grade('ROA', ratios['ROA']),
|
| 409 |
-
get_ratio_grade('ROE', ratios['ROE'])]
|
| 410 |
-
})
|
| 411 |
-
|
| 412 |
-
for _, row in metrics_df.iterrows():
|
| 413 |
-
col_a, col_b, col_c = st.columns([2, 1, 1])
|
| 414 |
-
with col_a:
|
| 415 |
-
st.write(row['Metric'])
|
| 416 |
-
with col_b:
|
| 417 |
-
st.write(f"{row['Value']:.1f}%")
|
| 418 |
-
with col_c:
|
| 419 |
-
color = {"A": "🟢", "B": "🟡", "C": "🟠", "D": "🔴"}.get(row['Grade'], "⚪")
|
| 420 |
-
st.write(f"{color} {row['Grade']}")
|
| 421 |
-
|
| 422 |
-
# Year over year comparison
|
| 423 |
-
st.subheader("📊 Year-over-Year Comparison")
|
| 424 |
-
comparison_data = pd.DataFrame({
|
| 425 |
-
'Account': ['Sales Revenue', 'Cost of Goods Sold', 'Operating Result', 'Annual Result'],
|
| 426 |
-
'2023': [
|
| 427 |
-
get_account_value(df, 'Sales Revenue', '2023')/1000000,
|
| 428 |
-
get_account_value(df, 'Cost of Goods Sold', '2023')/1000000,
|
| 429 |
-
get_account_value(df, 'Operating Result', '2023')/1000000,
|
| 430 |
-
get_account_value(df, 'Annual Result', '2023')/1000000
|
| 431 |
-
],
|
| 432 |
-
'2024': [
|
| 433 |
-
get_account_value(df, 'Sales Revenue', '2024')/1000000,
|
| 434 |
-
get_account_value(df, 'Cost of Goods Sold', '2024')/1000000,
|
| 435 |
-
get_account_value(df, 'Operating Result', '2024')/1000000,
|
| 436 |
-
get_account_value(df, 'Annual Result', '2024')/1000000
|
| 437 |
-
]
|
| 438 |
-
})
|
| 439 |
-
|
| 440 |
-
fig = go.Figure()
|
| 441 |
-
fig.add_trace(go.Bar(name='2023', x=comparison_data['Account'], y=comparison_data['2023'], marker_color='lightblue'))
|
| 442 |
-
fig.add_trace(go.Bar(name='2024', x=comparison_data['Account'], y=comparison_data['2024'], marker_color='darkblue'))
|
| 443 |
-
fig.update_layout(title="Income Statement Comparison (Million NOK)", barmode='group')
|
| 444 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 445 |
-
|
| 446 |
-
elif page == "🏛️ Balance Sheet":
|
| 447 |
-
st.title("🏛️ Balance Sheet Analysis")
|
| 448 |
-
|
| 449 |
-
col1, col2 = st.columns(2)
|
| 450 |
-
|
| 451 |
-
with col1:
|
| 452 |
-
st.subheader("🏦 Asset Structure")
|
| 453 |
-
current_assets = get_account_value(df, 'Total Current Assets', '2024')
|
| 454 |
-
fixed_assets = get_account_value(df, 'Total Fixed Assets', '2024')
|
| 455 |
-
|
| 456 |
-
asset_structure = pd.DataFrame({
|
| 457 |
-
'Asset Type': ['Current Assets', 'Fixed Assets'],
|
| 458 |
-
'Amount': [current_assets/1000000, fixed_assets/1000000]
|
| 459 |
-
})
|
| 460 |
-
|
| 461 |
-
fig = px.bar(asset_structure, x='Asset Type', y='Amount',
|
| 462 |
-
title="Asset Composition (Million NOK)")
|
| 463 |
-
fig.update_traces(marker_color=['#3498db', '#e74c3c'])
|
| 464 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 465 |
-
|
| 466 |
-
with col2:
|
| 467 |
-
st.subheader("⚖️ Solvency Ratios")
|
| 468 |
-
solvency_metrics = pd.DataFrame({
|
| 469 |
-
'Ratio': ['Current Ratio', 'Debt Ratio', 'Equity Ratio'],
|
| 470 |
-
'Value': [ratios['Current Ratio'], ratios['Debt Ratio'],
|
| 471 |
-
100 - ratios['Debt Ratio']],
|
| 472 |
-
'Benchmark': [1.5, 50, 50]
|
| 473 |
-
})
|
| 474 |
|
| 475 |
-
fig
|
| 476 |
-
fig.add_trace(go.Bar(name='Current', x=solvency_metrics['Ratio'],
|
| 477 |
-
y=solvency_metrics['Value'], marker_color='lightblue'))
|
| 478 |
-
fig.add_trace(go.Bar(name='Benchmark', x=solvency_metrics['Ratio'],
|
| 479 |
-
y=solvency_metrics['Benchmark'], marker_color='orange'))
|
| 480 |
-
fig.update_layout(title="Solvency Analysis", barmode='group')
|
| 481 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 482 |
-
|
| 483 |
-
# Balance sheet details
|
| 484 |
-
st.subheader("📋 Balance Sheet Details")
|
| 485 |
-
|
| 486 |
-
tab1, tab2, tab3 = st.tabs(["📊 Assets", "💳 Liabilities", "🏦 Equity"])
|
| 487 |
-
|
| 488 |
-
with tab1:
|
| 489 |
-
st.write("**Asset Breakdown (2024)**")
|
| 490 |
-
asset_details = pd.DataFrame({
|
| 491 |
-
'Asset Category': [
|
| 492 |
-
'Customer Receivables',
|
| 493 |
-
'Other Receivables',
|
| 494 |
-
'Bank Deposits Cash',
|
| 495 |
-
'Machinery and Equipment',
|
| 496 |
-
'Land Buildings'
|
| 497 |
-
],
|
| 498 |
-
'Amount (NOK)': [
|
| 499 |
-
get_account_value(df, 'Customer Receivables', '2024'),
|
| 500 |
-
get_account_value(df, 'Other Receivables', '2024'),
|
| 501 |
-
get_account_value(df, 'Bank Deposits Cash and Similar', '2024'),
|
| 502 |
-
get_account_value(df, 'Machinery and Equipment', '2024'),
|
| 503 |
-
get_account_value(df, 'Land Buildings and Other Real Estate', '2024')
|
| 504 |
-
]
|
| 505 |
-
})
|
| 506 |
-
asset_details['Amount (Million NOK)'] = asset_details['Amount (NOK)'] / 1000000
|
| 507 |
-
asset_details['Percentage'] = (asset_details['Amount (NOK)'] / asset_details['Amount (NOK)'].sum() * 100).round(1)
|
| 508 |
-
st.dataframe(asset_details[['Asset Category', 'Amount (Million NOK)', 'Percentage']], use_container_width=True)
|
| 509 |
-
|
| 510 |
-
with tab2:
|
| 511 |
-
st.write("**Liability Breakdown (2024)**")
|
| 512 |
-
liability_details = pd.DataFrame({
|
| 513 |
-
'Liability Category': [
|
| 514 |
-
'Accounts Payable',
|
| 515 |
-
'Short-term Debt',
|
| 516 |
-
'Long-term Debt',
|
| 517 |
-
'Payable Tax'
|
| 518 |
-
],
|
| 519 |
-
'Amount (NOK)': [
|
| 520 |
-
get_account_value(df, 'Accounts Payable', '2024'),
|
| 521 |
-
get_account_value(df, 'Total Short-term Debt', '2024'),
|
| 522 |
-
get_account_value(df, 'Total Long-term Debt', '2024'),
|
| 523 |
-
get_account_value(df, 'Payable Tax', '2024')
|
| 524 |
-
]
|
| 525 |
-
})
|
| 526 |
-
liability_details['Amount (Million NOK)'] = liability_details['Amount (NOK)'] / 1000000
|
| 527 |
-
liability_details['Percentage'] = (liability_details['Amount (NOK)'] / liability_details['Amount (NOK)'].sum() * 100).round(1)
|
| 528 |
-
st.dataframe(liability_details[['Liability Category', 'Amount (Million NOK)', 'Percentage']], use_container_width=True)
|
| 529 |
-
|
| 530 |
-
with tab3:
|
| 531 |
-
st.write("**Equity Breakdown (2024)**")
|
| 532 |
-
equity_details = pd.DataFrame({
|
| 533 |
-
'Equity Category': [
|
| 534 |
-
'Share Capital',
|
| 535 |
-
'Retained Earnings'
|
| 536 |
-
],
|
| 537 |
-
'Amount (NOK)': [
|
| 538 |
-
get_account_value(df, 'Share Capital', '2024'),
|
| 539 |
-
get_account_value(df, 'Other Equity', '2024')
|
| 540 |
-
]
|
| 541 |
-
})
|
| 542 |
-
equity_details['Amount (Million NOK)'] = equity_details['Amount (NOK)'] / 1000000
|
| 543 |
-
equity_details['Percentage'] = (equity_details['Amount (NOK)'] / equity_details['Amount (NOK)'].sum() * 100).round(1)
|
| 544 |
-
st.dataframe(equity_details[['Equity Category', 'Amount (Million NOK)', 'Percentage']], use_container_width=True)
|
| 545 |
-
|
| 546 |
-
elif page == "💸 Cash Flow":
|
| 547 |
-
st.title("💸 Cash Flow Analysis")
|
| 548 |
-
|
| 549 |
-
# Cash flow waterfall
|
| 550 |
-
st.subheader("🌊 Cash Flow Waterfall")
|
| 551 |
-
|
| 552 |
-
operating_cf = get_account_value(df, 'Net Cash Flow from Operating Activities', '2024')
|
| 553 |
-
investing_cf = get_account_value(df, 'Net Cash Flow from Investing Activities', '2024')
|
| 554 |
-
financing_cf = get_account_value(df, 'Net Cash Flow from Financing Activities', '2024')
|
| 555 |
-
net_change = get_account_value(df, 'NET CHANGE IN CASH', '2024')
|
| 556 |
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
st.metric("💧 Cash Quality Ratio", f"{quality_ratio:.2f}",
|
| 579 |
-
"Healthy" if quality_ratio > 1 else "Needs attention")
|
| 580 |
-
|
| 581 |
-
with col2:
|
| 582 |
-
fcf = operating_cf + investing_cf # OCF + Investing
|
| 583 |
-
st.metric("🆓 Free Cash Flow", f"{fcf/1000000:.1f}M NOK",
|
| 584 |
-
"Positive" if fcf > 0 else "Negative")
|
| 585 |
-
|
| 586 |
-
with col3:
|
| 587 |
-
cash_current = get_account_value(df, 'Cash at End of Period', '2024')
|
| 588 |
-
cash_prev = get_account_value(df, 'Cash at Beginning of Period', '2024')
|
| 589 |
-
cash_growth = ((cash_current - cash_prev) / cash_prev * 100) if cash_prev != 0 else 0
|
| 590 |
-
st.metric("💰 Cash Growth", f"{cash_growth:+.1f}%")
|
| 591 |
-
|
| 592 |
-
# Detailed cash flow analysis
|
| 593 |
-
st.subheader("📊 Cash Flow Components")
|
| 594 |
-
|
| 595 |
-
tab1, tab2, tab3 = st.tabs(["🏭 Operating", "🏗️ Investing", "💰 Financing"])
|
| 596 |
-
|
| 597 |
-
with tab1:
|
| 598 |
-
st.write("**Operating Cash Flow Components**")
|
| 599 |
-
operating_components = pd.DataFrame({
|
| 600 |
-
'Component': [
|
| 601 |
-
'Net Income',
|
| 602 |
-
'Depreciation',
|
| 603 |
-
'Change in Receivables',
|
| 604 |
-
'Change in Payables'
|
| 605 |
-
],
|
| 606 |
-
'Amount (Million NOK)': [
|
| 607 |
-
get_account_value(df, 'Net Income', '2024')/1000000,
|
| 608 |
-
get_account_value(df, 'Depreciation', '2024')/1000000,
|
| 609 |
-
get_account_value(df, 'Change in Customer Receivables', '2024')/1000000,
|
| 610 |
-
get_account_value(df, 'Change in Accounts Payable', '2024')/1000000
|
| 611 |
-
]
|
| 612 |
-
})
|
| 613 |
-
st.dataframe(operating_components, use_container_width=True)
|
| 614 |
-
|
| 615 |
-
with tab2:
|
| 616 |
-
st.write("**Investing Cash Flow Components**")
|
| 617 |
-
investing_components = pd.DataFrame({
|
| 618 |
-
'Component': [
|
| 619 |
-
'Purchase of Fixed Assets',
|
| 620 |
-
'Change in Financial Assets'
|
| 621 |
-
],
|
| 622 |
-
'Amount (Million NOK)': [
|
| 623 |
-
get_account_value(df, 'Purchase of Fixed Assets', '2024')/1000000,
|
| 624 |
-
get_account_value(df, 'Change in Financial Fixed Assets', '2024')/1000000
|
| 625 |
-
]
|
| 626 |
-
})
|
| 627 |
-
st.dataframe(investing_components, use_container_width=True)
|
| 628 |
-
|
| 629 |
-
with tab3:
|
| 630 |
-
st.write("**Financing Cash Flow Components**")
|
| 631 |
-
financing_components = pd.DataFrame({
|
| 632 |
-
'Component': [
|
| 633 |
-
'Change in Long-term Debt',
|
| 634 |
-
'Change in Other Long-term Debt'
|
| 635 |
-
],
|
| 636 |
-
'Amount (Million NOK)': [
|
| 637 |
-
get_account_value(df, 'Change in Long-term Debt to Credit Institutions', '2024')/1000000,
|
| 638 |
-
get_account_value(df, 'Change in Other Long-term Debt', '2024')/1000000
|
| 639 |
-
]
|
| 640 |
-
})
|
| 641 |
-
st.dataframe(financing_components, use_container_width=True)
|
| 642 |
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
'
|
| 649 |
-
'
|
| 650 |
-
'
|
| 651 |
-
'
|
| 652 |
}
|
| 653 |
-
|
| 654 |
-
selected_category = st.selectbox("Select Ratio Category",
|
| 655 |
-
['All'] + list(ratio_categories.keys()))
|
| 656 |
-
|
| 657 |
-
# Display ratios
|
| 658 |
-
for category, ratio_names in ratio_categories.items():
|
| 659 |
-
if selected_category == 'All' or selected_category == category:
|
| 660 |
-
st.subheader(f"📈 {category} Ratios")
|
| 661 |
-
|
| 662 |
-
cols = st.columns(min(len(ratio_names), 4)) # Max 4 columns
|
| 663 |
-
for i, ratio_name in enumerate(ratio_names):
|
| 664 |
-
with cols[i % 4]:
|
| 665 |
-
value = ratios[ratio_name]
|
| 666 |
-
grade = get_ratio_grade(ratio_name, value)
|
| 667 |
-
grade_color = {"A": "🟢", "B": "🟡", "C": "🟠", "D": "🔴"}.get(grade, "⚪")
|
| 668 |
-
|
| 669 |
-
if ratio_name in ['Current Ratio', 'Asset Turnover', 'Debt to Equity']:
|
| 670 |
-
st.metric(ratio_name, f"{value:.2f}", f"Grade: {grade_color} {grade}")
|
| 671 |
-
else:
|
| 672 |
-
st.metric(ratio_name, f"{value:.1f}%", f"Grade: {grade_color} {grade}")
|
| 673 |
-
|
| 674 |
-
# Industry benchmark comparison
|
| 675 |
-
st.subheader("🎯 Industry Benchmark Comparison")
|
| 676 |
-
|
| 677 |
-
benchmark_data = pd.DataFrame({
|
| 678 |
-
'Ratio': ['ROE (%)', 'ROA (%)', 'Current Ratio', 'Debt Ratio (%)'],
|
| 679 |
-
'Your Company': [ratios['ROE'], ratios['ROA'], ratios['Current Ratio'], ratios['Debt Ratio']],
|
| 680 |
-
'Industry Average': [15.0, 8.0, 1.5, 45.0]
|
| 681 |
-
})
|
| 682 |
-
|
| 683 |
-
fig = go.Figure()
|
| 684 |
-
fig.add_trace(go.Bar(name='Your Company', x=benchmark_data['Ratio'],
|
| 685 |
-
y=benchmark_data['Your Company'], marker_color='lightblue'))
|
| 686 |
-
fig.add_trace(go.Bar(name='Industry Average', x=benchmark_data['Ratio'],
|
| 687 |
-
y=benchmark_data['Industry Average'], marker_color='orange'))
|
| 688 |
-
fig.update_layout(title="Performance vs Industry Benchmarks", barmode='group')
|
| 689 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 690 |
-
|
| 691 |
-
# Ratio trend analysis
|
| 692 |
-
st.subheader("📈 Ratio Trends")
|
| 693 |
-
|
| 694 |
-
# Create sample trend data
|
| 695 |
-
trend_ratios = pd.DataFrame({
|
| 696 |
-
'Year': ['2023', '2024'],
|
| 697 |
-
'ROE': [
|
| 698 |
-
(get_account_value(df, 'Annual Result', '2023') / get_account_value(df, 'Total Equity', '2023') * 100),
|
| 699 |
-
ratios['ROE']
|
| 700 |
-
],
|
| 701 |
-
'Current Ratio': [
|
| 702 |
-
(get_account_value(df, 'Total Current Assets', '2023') / get_account_value(df, 'Total Short-term Debt', '2023')),
|
| 703 |
-
ratios['Current Ratio']
|
| 704 |
-
],
|
| 705 |
-
'Debt Ratio': [
|
| 706 |
-
(get_account_value(df, 'Total Debt', '2023') / get_account_value(df, 'TOTAL ASSETS', '2023') * 100),
|
| 707 |
-
ratios['Debt Ratio']
|
| 708 |
-
]
|
| 709 |
-
})
|
| 710 |
-
|
| 711 |
-
fig = px.line(trend_ratios, x='Year', y=['ROE', 'Debt Ratio'],
|
| 712 |
-
title="Key Ratios Trend Analysis")
|
| 713 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 714 |
|
| 715 |
-
|
| 716 |
-
st.title("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
col1, col2, col3 = st.columns(3)
|
| 721 |
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
st.write("• Revenue growth of 413% indicates explosive business growth")
|
| 726 |
-
st.write("• Strong profitability with 21.2% net margin")
|
| 727 |
-
st.write("• Good liquidity with current ratio of 1.37")
|
| 728 |
-
st.write("• Moderate leverage at 51.8% debt ratio")
|
| 729 |
-
st.write("• **Overall Grade: A- (Excellent performance)**")
|
| 730 |
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
st.write("• Customer concentration risk needs monitoring")
|
| 737 |
-
st.write("• **Recommendation: Strengthen cash collection processes**")
|
| 738 |
|
| 739 |
-
|
| 740 |
-
if st.button("💡 Strategic Recommendations", key="recommendations"):
|
| 741 |
-
st.info("**Strategic Recommendations:**")
|
| 742 |
-
st.write("• Implement automated invoicing and follow-up systems")
|
| 743 |
-
st.write("• Consider factoring high-quality receivables")
|
| 744 |
-
st.write("• Build cash reserves to 15-20% of revenue")
|
| 745 |
-
st.write("• **Focus: Scale operations while maintaining profitability**")
|
| 746 |
|
| 747 |
-
#
|
| 748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
|
| 750 |
-
#
|
| 751 |
-
|
| 752 |
-
st.
|
| 753 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
]
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
#
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
|
|
|
| 774 |
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 788 |
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
|
|
|
|
|
|
| 797 |
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
• **Priority:** Improve collection processes and build cash reserves"""
|
| 804 |
|
| 805 |
-
|
| 806 |
-
response = f"""**Benchmark Comparison:**
|
| 807 |
-
• Your ROE ({ratios['ROE']:.1f}%) vs Industry avg (15%): **Excellent**
|
| 808 |
-
• Your ROA ({ratios['ROA']:.1f}%) vs Industry avg (8%): **Outstanding**
|
| 809 |
-
• Your current ratio ({ratios['Current Ratio']:.1f}) vs Industry avg (1.5): **Needs improvement**
|
| 810 |
-
• **Overall:** You're outperforming on profitability, focus on liquidity"""
|
| 811 |
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
1. **Short-term (3 months):**
|
| 815 |
-
- Implement automated invoice management
|
| 816 |
-
- Negotiate better payment terms with major customers
|
| 817 |
-
|
| 818 |
-
2. **Medium-term (6-12 months):**
|
| 819 |
-
- Build cash reserves to 15-20% of revenue
|
| 820 |
-
- Consider factoring receivables if needed
|
| 821 |
-
|
| 822 |
-
3. **Long-term (12+ months):**
|
| 823 |
-
- Diversify customer base to reduce concentration risk
|
| 824 |
-
- Optimize working capital cycle"""
|
| 825 |
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 837 |
|
| 838 |
-
st.
|
| 839 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 840 |
|
| 841 |
-
#
|
| 842 |
-
|
| 843 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 844 |
|
| 845 |
with col1:
|
| 846 |
-
st.
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
|
| 852 |
with col2:
|
| 853 |
-
st.
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
• **Dashboard:** Overview & key metrics
|
| 883 |
-
• **Income Analysis:** Profitability deep-dive
|
| 884 |
-
• **Balance Sheet:** Asset/liability structure
|
| 885 |
-
• **Cash Flow:** Liquidity analysis
|
| 886 |
-
• **Ratios Hub:** Comprehensive ratio analysis
|
| 887 |
-
• **AI Assistant:** Interactive financial insights
|
| 888 |
-
""")
|
|
|
|
| 7 |
from datetime import datetime
|
| 8 |
import io
|
| 9 |
|
| 10 |
+
# Page configuration
|
| 11 |
st.set_page_config(
|
| 12 |
page_title="FinanceGPT Analyzer",
|
| 13 |
page_icon="📊",
|
| 14 |
+
layout="wide"
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
+
# Custom CSS for better styling
|
| 18 |
st.markdown("""
|
| 19 |
<style>
|
| 20 |
.metric-card {
|
| 21 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 22 |
padding: 1rem;
|
| 23 |
border-radius: 10px;
|
| 24 |
color: white;
|
| 25 |
text-align: center;
|
|
|
|
| 26 |
}
|
| 27 |
.insight-box {
|
| 28 |
background: #f8f9fa;
|
| 29 |
+
border-left: 4px solid #28a745;
|
| 30 |
padding: 1rem;
|
| 31 |
margin: 1rem 0;
|
|
|
|
| 32 |
}
|
| 33 |
+
.risk-alert {
|
| 34 |
+
background: #fff3cd;
|
| 35 |
+
border-left: 4px solid #ffc107;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
padding: 1rem;
|
| 37 |
+
margin: 1rem 0;
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
</style>
|
| 40 |
""", unsafe_allow_html=True)
|
| 41 |
|
| 42 |
+
class FinancialAnalyzer:
|
| 43 |
+
def __init__(self, df):
|
| 44 |
+
self.df = df.copy()
|
| 45 |
+
self.process_data()
|
| 46 |
+
|
| 47 |
+
def process_data(self):
|
| 48 |
+
"""Process and structure financial data"""
|
| 49 |
+
# Create pivot table for easier analysis
|
| 50 |
+
self.pivot_df = self.df.pivot_table(
|
| 51 |
+
index=['Year', 'Statement_Type'],
|
| 52 |
+
columns='Account_Name_English',
|
| 53 |
+
values=['2024_Amount_NOK', '2023_Amount_NOK'],
|
| 54 |
+
aggfunc='first'
|
| 55 |
+
).fillna(0)
|
| 56 |
+
|
| 57 |
+
# Flatten column names
|
| 58 |
+
self.pivot_df.columns = ['_'.join(col).strip() for col in self.pivot_df.columns]
|
| 59 |
+
self.pivot_df = self.pivot_df.reset_index()
|
| 60 |
+
|
| 61 |
+
def get_key_metrics(self):
|
| 62 |
+
"""Calculate key financial metrics"""
|
| 63 |
+
try:
|
| 64 |
+
# Extract key values
|
| 65 |
+
revenue_2024 = self.df[self.df['Account_Name_English'] == 'Sales Revenue']['2024_Amount_NOK'].iloc[0]
|
| 66 |
+
revenue_2023 = self.df[self.df['Account_Name_English'] == 'Sales Revenue']['2023_Amount_NOK'].iloc[0]
|
| 67 |
+
|
| 68 |
+
# Try to get net profit (might have different names)
|
| 69 |
+
net_profit_2024 = 0
|
| 70 |
+
net_profit_2023 = 0
|
| 71 |
+
|
| 72 |
+
profit_accounts = ['Net Profit', 'Net Income', 'Profit After Tax', 'Result']
|
| 73 |
+
for account in profit_accounts:
|
| 74 |
+
profit_data = self.df[self.df['Account_Name_English'].str.contains(account, case=False, na=False)]
|
| 75 |
+
if not profit_data.empty:
|
| 76 |
+
net_profit_2024 = profit_data['2024_Amount_NOK'].iloc[0]
|
| 77 |
+
net_profit_2023 = profit_data['2023_Amount_NOK'].iloc[0]
|
| 78 |
+
break
|
| 79 |
+
|
| 80 |
+
# Calculate growth rates
|
| 81 |
+
revenue_growth = ((revenue_2024 - revenue_2023) / revenue_2023 * 100) if revenue_2023 != 0 else 0
|
| 82 |
+
profit_growth = ((net_profit_2024 - net_profit_2023) / abs(net_profit_2023) * 100) if net_profit_2023 != 0 else 0
|
| 83 |
+
|
| 84 |
+
return {
|
| 85 |
+
'revenue_2024': revenue_2024,
|
| 86 |
+
'revenue_2023': revenue_2023,
|
| 87 |
+
'revenue_growth': revenue_growth,
|
| 88 |
+
'net_profit_2024': net_profit_2024,
|
| 89 |
+
'net_profit_2023': net_profit_2023,
|
| 90 |
+
'profit_growth': profit_growth
|
| 91 |
+
}
|
| 92 |
+
except:
|
| 93 |
+
return {
|
| 94 |
+
'revenue_2024': 0, 'revenue_2023': 0, 'revenue_growth': 0,
|
| 95 |
+
'net_profit_2024': 0, 'net_profit_2023': 0, 'profit_growth': 0
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
def create_revenue_trend_chart(self):
|
| 99 |
+
"""Create revenue trend visualization"""
|
| 100 |
+
metrics = self.get_key_metrics()
|
| 101 |
+
|
| 102 |
+
fig = go.Figure()
|
| 103 |
+
|
| 104 |
+
years = ['2023', '2024']
|
| 105 |
+
revenues = [metrics['revenue_2023'], metrics['revenue_2024']]
|
| 106 |
+
profits = [metrics['net_profit_2023'], metrics['net_profit_2024']]
|
| 107 |
+
|
| 108 |
+
# Revenue line
|
| 109 |
+
fig.add_trace(go.Scatter(
|
| 110 |
+
x=years, y=revenues,
|
| 111 |
+
mode='lines+markers',
|
| 112 |
+
name='Revenue',
|
| 113 |
+
line=dict(color='#1f77b4', width=3),
|
| 114 |
+
marker=dict(size=10)
|
| 115 |
+
))
|
| 116 |
+
|
| 117 |
+
# Profit line (secondary y-axis)
|
| 118 |
+
fig.add_trace(go.Scatter(
|
| 119 |
+
x=years, y=profits,
|
| 120 |
+
mode='lines+markers',
|
| 121 |
+
name='Net Profit',
|
| 122 |
+
line=dict(color='#ff7f0e', width=3),
|
| 123 |
+
marker=dict(size=10),
|
| 124 |
+
yaxis='y2'
|
| 125 |
+
))
|
| 126 |
+
|
| 127 |
+
fig.update_layout(
|
| 128 |
+
title='Revenue vs Profit Trend',
|
| 129 |
+
xaxis_title='Year',
|
| 130 |
+
yaxis=dict(title='Revenue (NOK)', side='left'),
|
| 131 |
+
yaxis2=dict(title='Net Profit (NOK)', side='right', overlaying='y'),
|
| 132 |
+
hovermode='x unified',
|
| 133 |
+
template='plotly_white'
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
def create_financial_health_radar(self):
|
| 139 |
+
"""Create financial health radar chart"""
|
| 140 |
+
metrics = self.get_key_metrics()
|
| 141 |
+
|
| 142 |
+
# Calculate health scores (0-100)
|
| 143 |
+
revenue_score = min(100, max(0, metrics['revenue_growth'] + 50)) # Base 50, adjust by growth
|
| 144 |
+
profit_score = 85 if metrics['net_profit_2024'] > 0 else 25
|
| 145 |
+
growth_score = min(100, max(0, metrics['revenue_growth']))
|
| 146 |
+
stability_score = 75 # Default for demo
|
| 147 |
+
efficiency_score = 70 # Default for demo
|
| 148 |
+
|
| 149 |
+
categories = ['Revenue Growth', 'Profitability', 'Growth Rate', 'Stability', 'Efficiency']
|
| 150 |
+
values = [revenue_score, profit_score, growth_score, stability_score, efficiency_score]
|
| 151 |
|
| 152 |
+
fig = go.Figure()
|
| 153 |
+
|
| 154 |
+
fig.add_trace(go.Scatterpolar(
|
| 155 |
+
r=values,
|
| 156 |
theta=categories,
|
| 157 |
fill='toself',
|
| 158 |
+
name='Financial Health',
|
| 159 |
+
line=dict(color='#2E86AB'),
|
| 160 |
+
fillcolor='rgba(46, 134, 171, 0.3)'
|
| 161 |
))
|
| 162 |
+
|
| 163 |
fig.update_layout(
|
| 164 |
+
polar=dict(
|
| 165 |
+
radialaxis=dict(
|
| 166 |
+
visible=True,
|
| 167 |
+
range=[0, 100]
|
| 168 |
+
)),
|
| 169 |
+
showlegend=False,
|
| 170 |
+
title="Financial Health Score"
|
| 171 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
def generate_insights(self):
|
| 176 |
+
"""Generate AI-powered insights"""
|
| 177 |
+
metrics = self.get_key_metrics()
|
| 178 |
+
insights = []
|
| 179 |
+
|
| 180 |
+
if metrics['revenue_growth'] > 100:
|
| 181 |
+
insights.append("🚀 Exceptional revenue growth of {:.1f}% indicates strong business expansion".format(metrics['revenue_growth']))
|
| 182 |
+
elif metrics['revenue_growth'] > 20:
|
| 183 |
+
insights.append("📈 Strong revenue growth of {:.1f}% shows healthy business development".format(metrics['revenue_growth']))
|
| 184 |
+
elif metrics['revenue_growth'] < 0:
|
| 185 |
+
insights.append("⚠️ Revenue declined by {:.1f}%, requires immediate attention".format(abs(metrics['revenue_growth'])))
|
| 186 |
+
|
| 187 |
+
if metrics['net_profit_2024'] > 0 and metrics['net_profit_2023'] <= 0:
|
| 188 |
+
insights.append("✅ Company achieved profitability in 2024, turning around from previous losses")
|
| 189 |
+
elif metrics['net_profit_2024'] > metrics['net_profit_2023'] and metrics['net_profit_2023'] > 0:
|
| 190 |
+
insights.append("💰 Profit increased by {:.1f}%, showing improved efficiency".format(metrics['profit_growth']))
|
| 191 |
+
|
| 192 |
+
if not insights:
|
| 193 |
+
insights.append("📊 Financial data processed successfully. Consider uploading more detailed statements for deeper analysis.")
|
| 194 |
+
|
| 195 |
+
return insights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
def create_sample_data():
|
| 198 |
+
"""Create sample financial data"""
|
| 199 |
+
sample_data = {
|
| 200 |
+
'Year': [2024, 2024, 2024, 2024, 2024] * 2,
|
| 201 |
+
'Statement_Type': ['Income Statement'] * 5 + ['Balance Sheet'] * 5,
|
| 202 |
+
'Account_Name_Norwegian': ['Salgsinntekt', 'Varekostnad', 'Driftsresultat', 'Nettoresultat', 'Kontanter'] * 2,
|
| 203 |
+
'Account_Name_English': ['Sales Revenue', 'Cost of Goods Sold', 'Operating Result', 'Net Result', 'Cash'] * 2,
|
| 204 |
+
'2024_Amount_NOK': [25107008, -15000000, 8000000, 5300000, 1600000] * 2,
|
| 205 |
+
'2023_Amount_NOK': [4891891, -3000000, 1500000, -500000, 800000] * 2
|
| 206 |
}
|
| 207 |
+
return pd.DataFrame(sample_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
def main():
|
| 210 |
+
st.title("📊 FinanceGPT Analyzer")
|
| 211 |
+
st.markdown("### Professional Financial Analysis Platform")
|
| 212 |
+
|
| 213 |
+
# Sidebar navigation
|
| 214 |
+
pages = {
|
| 215 |
+
"🏠 Dashboard": "dashboard",
|
| 216 |
+
"💰 Income Analysis": "income",
|
| 217 |
+
"🏛️ Balance Sheet": "balance",
|
| 218 |
+
"💸 Cash Flow": "cashflow",
|
| 219 |
+
"📊 Financial Ratios": "ratios",
|
| 220 |
+
"🤖 AI Assistant": "ai"
|
| 221 |
+
}
|
| 222 |
|
| 223 |
+
selected_page = st.sidebar.selectbox("Navigation", list(pages.keys()))
|
| 224 |
+
current_page = pages[selected_page]
|
|
|
|
| 225 |
|
| 226 |
+
# File upload section
|
| 227 |
+
st.sidebar.markdown("---")
|
| 228 |
+
st.sidebar.subheader("📁 Data Upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
uploaded_file = st.sidebar.file_uploader(
|
| 231 |
+
"Upload CSV file",
|
| 232 |
+
type=['csv'],
|
| 233 |
+
help="Upload your financial statement CSV file"
|
| 234 |
+
)
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
use_sample = st.sidebar.button("📊 Use Sample Data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
# Load data
|
| 239 |
+
if uploaded_file is not None:
|
| 240 |
+
df = pd.read_csv(uploaded_file)
|
| 241 |
+
st.sidebar.success("✅ File uploaded successfully!")
|
| 242 |
+
elif use_sample:
|
| 243 |
+
df = create_sample_data()
|
| 244 |
+
st.sidebar.success("✅ Sample data loaded!")
|
| 245 |
+
else:
|
| 246 |
+
st.info("👆 Please upload a CSV file or use sample data to get started")
|
| 247 |
+
st.markdown("""
|
| 248 |
+
### Expected CSV Format:
|
| 249 |
+
- **Year**: Year of the financial statement
|
| 250 |
+
- **Statement_Type**: Income Statement, Balance Sheet, Cash Flow
|
| 251 |
+
- **Account_Name_Norwegian**: Norwegian account name
|
| 252 |
+
- **Account_Name_English**: English account name
|
| 253 |
+
- **2024_Amount_NOK**: Amount for 2024 in NOK
|
| 254 |
+
- **2023_Amount_NOK**: Amount for 2023 in NOK
|
| 255 |
+
""")
|
| 256 |
+
return
|
| 257 |
+
|
| 258 |
+
# Initialize analyzer
|
| 259 |
+
analyzer = FinancialAnalyzer(df)
|
| 260 |
+
|
| 261 |
+
# Dashboard Page
|
| 262 |
+
if current_page == "dashboard":
|
| 263 |
+
st.markdown("## 🏠 Financial Dashboard")
|
| 264 |
+
|
| 265 |
+
# Key Metrics Cards
|
| 266 |
+
metrics = analyzer.get_key_metrics()
|
| 267 |
+
|
| 268 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 269 |
+
|
| 270 |
+
with col1:
|
| 271 |
+
st.metric(
|
| 272 |
+
"💰 Revenue 2024",
|
| 273 |
+
f"{metrics['revenue_2024']:,.0f} NOK",
|
| 274 |
+
delta=f"{metrics['revenue_growth']:+.1f}%"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
with col2:
|
| 278 |
+
st.metric(
|
| 279 |
+
"📈 Net Profit 2024",
|
| 280 |
+
f"{metrics['net_profit_2024']:,.0f} NOK",
|
| 281 |
+
delta="Turnaround ✅" if metrics['net_profit_2024'] > 0 and metrics['net_profit_2023'] <= 0 else f"{metrics['profit_growth']:+.1f}%"
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with col3:
|
| 285 |
+
st.metric(
|
| 286 |
+
"📊 Revenue Growth",
|
| 287 |
+
f"{metrics['revenue_growth']:+.1f}%",
|
| 288 |
+
delta="Strong Growth 🚀" if metrics['revenue_growth'] > 100 else "Growth 📈"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
with col4:
|
| 292 |
+
total_accounts = len(df['Account_Name_English'].unique())
|
| 293 |
+
st.metric(
|
| 294 |
+
"📋 Accounts Analyzed",
|
| 295 |
+
f"{total_accounts}",
|
| 296 |
+
delta="Data Points"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Charts Section
|
| 300 |
+
col1, col2 = st.columns(2)
|
| 301 |
+
|
| 302 |
+
with col1:
|
| 303 |
+
fig_trend = analyzer.create_revenue_trend_chart()
|
| 304 |
+
st.plotly_chart(fig_trend, use_container_width=True)
|
| 305 |
+
|
| 306 |
+
with col2:
|
| 307 |
+
fig_radar = analyzer.create_financial_health_radar()
|
| 308 |
+
st.plotly_chart(fig_radar, use_container_width=True)
|
| 309 |
+
|
| 310 |
+
# Quick Insights
|
| 311 |
+
st.markdown("## 🎯 Quick Insights")
|
| 312 |
+
insights = analyzer.generate_insights()
|
| 313 |
+
|
| 314 |
+
for insight in insights:
|
| 315 |
+
st.markdown(f"""
|
| 316 |
+
<div class="insight-box">
|
| 317 |
+
<strong>{insight}</strong>
|
| 318 |
+
</div>
|
| 319 |
+
""", unsafe_allow_html=True)
|
| 320 |
+
|
| 321 |
+
# Income Analysis Page
|
| 322 |
+
elif current_page == "income":
|
| 323 |
+
st.markdown("## 💰 Income Analysis")
|
| 324 |
+
|
| 325 |
+
# Filter income statement data
|
| 326 |
+
income_data = df[df['Statement_Type'] == 'Income Statement']
|
| 327 |
+
|
| 328 |
+
if income_data.empty:
|
| 329 |
+
st.warning("No income statement data found in the uploaded file.")
|
| 330 |
+
return
|
| 331 |
+
|
| 332 |
+
# Revenue analysis
|
| 333 |
+
st.subheader("📈 Revenue Trend Analysis")
|
| 334 |
+
|
| 335 |
+
revenue_data = income_data[income_data['Account_Name_English'].str.contains('Revenue|Sales', case=False, na=False)]
|
| 336 |
+
|
| 337 |
+
if not revenue_data.empty:
|
| 338 |
+
fig = go.Figure()
|
| 339 |
+
|
| 340 |
+
for _, row in revenue_data.iterrows():
|
| 341 |
+
fig.add_trace(go.Bar(
|
| 342 |
+
x=['2023', '2024'],
|
| 343 |
+
y=[row['2023_Amount_NOK'], row['2024_Amount_NOK']],
|
| 344 |
+
name=row['Account_Name_English'],
|
| 345 |
+
text=[f"{row['2023_Amount_NOK']:,.0f}", f"{row['2024_Amount_NOK']:,.0f}"],
|
| 346 |
+
textposition='auto'
|
| 347 |
+
))
|
| 348 |
+
|
| 349 |
+
fig.update_layout(
|
| 350 |
+
title="Revenue Comparison 2023 vs 2024",
|
| 351 |
+
xaxis_title="Year",
|
| 352 |
+
yaxis_title="Amount (NOK)",
|
| 353 |
+
template='plotly_white'
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 357 |
+
|
| 358 |
+
# Cost analysis
|
| 359 |
+
st.subheader("🥧 Cost Structure Analysis")
|
| 360 |
+
|
| 361 |
+
cost_data = income_data[income_data['Account_Name_English'].str.contains('Cost|Expense', case=False, na=False)]
|
| 362 |
+
|
| 363 |
+
if not cost_data.empty:
|
| 364 |
+
# Create pie chart for 2024 costs
|
| 365 |
+
fig_pie = px.pie(
|
| 366 |
+
cost_data,
|
| 367 |
+
values='2024_Amount_NOK',
|
| 368 |
+
names='Account_Name_English',
|
| 369 |
+
title="Cost Structure 2024"
|
| 370 |
+
)
|
| 371 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 372 |
+
|
| 373 |
+
# Profitability metrics
|
| 374 |
+
st.subheader("📊 Profitability Indicators")
|
| 375 |
+
|
| 376 |
+
metrics = analyzer.get_key_metrics()
|
| 377 |
+
|
| 378 |
+
col1, col2, col3 = st.columns(3)
|
| 379 |
+
|
| 380 |
+
with col1:
|
| 381 |
+
if metrics['revenue_2024'] > 0:
|
| 382 |
+
profit_margin = (metrics['net_profit_2024'] / metrics['revenue_2024']) * 100
|
| 383 |
+
st.metric("Net Profit Margin", f"{profit_margin:.1f}%")
|
| 384 |
+
|
| 385 |
+
with col2:
|
| 386 |
+
st.metric("Revenue Growth", f"{metrics['revenue_growth']:+.1f}%")
|
| 387 |
+
|
| 388 |
+
with col3:
|
| 389 |
+
if metrics['net_profit_2023'] != 0:
|
| 390 |
+
st.metric("Profit Growth", f"{metrics['profit_growth']:+.1f}%")
|
| 391 |
|
| 392 |
+
# Balance Sheet Page
|
| 393 |
+
elif current_page == "balance":
|
| 394 |
+
st.markdown("## 🏛️ Balance Sheet Analysis")
|
| 395 |
+
|
| 396 |
+
balance_data = df[df['Statement_Type'] == 'Balance Sheet']
|
| 397 |
+
|
| 398 |
+
if balance_data.empty:
|
| 399 |
+
st.warning("No balance sheet data found. Please upload data with Balance Sheet entries.")
|
| 400 |
+
st.markdown("### Sample Balance Sheet Accounts:")
|
| 401 |
+
st.markdown("- Cash, Accounts Receivable, Inventory (Assets)")
|
| 402 |
+
st.markdown("- Accounts Payable, Long-term Debt (Liabilities)")
|
| 403 |
+
st.markdown("- Equity, Retained Earnings (Equity)")
|
| 404 |
+
return
|
| 405 |
+
|
| 406 |
+
# Asset analysis
|
| 407 |
+
st.subheader("📊 Asset Structure")
|
| 408 |
+
|
| 409 |
+
asset_keywords = ['Cash', 'Receivable', 'Inventory', 'Asset', 'Equipment', 'Property']
|
| 410 |
+
asset_data = balance_data[
|
| 411 |
+
balance_data['Account_Name_English'].str.contains('|'.join(asset_keywords), case=False, na=False)
|
| 412 |
]
|
| 413 |
+
|
| 414 |
+
if not asset_data.empty:
|
| 415 |
+
fig_assets = px.bar(
|
| 416 |
+
asset_data,
|
| 417 |
+
x='Account_Name_English',
|
| 418 |
+
y=['2023_Amount_NOK', '2024_Amount_NOK'],
|
| 419 |
+
title="Asset Comparison 2023 vs 2024",
|
| 420 |
+
barmode='group'
|
| 421 |
+
)
|
| 422 |
+
st.plotly_chart(fig_assets, use_container_width=True)
|
| 423 |
+
|
| 424 |
+
# Liquidity ratios (if we have the right accounts)
|
| 425 |
+
st.subheader("⚖️ Financial Ratios")
|
| 426 |
+
|
| 427 |
+
cash_data = balance_data[balance_data['Account_Name_English'].str.contains('Cash', case=False, na=False)]
|
| 428 |
+
debt_data = balance_data[balance_data['Account_Name_English'].str.contains('Debt|Payable', case=False, na=False)]
|
| 429 |
+
|
| 430 |
+
if not cash_data.empty:
|
| 431 |
+
cash_2024 = cash_data['2024_Amount_NOK'].iloc[0]
|
| 432 |
+
cash_2023 = cash_data['2023_Amount_NOK'].iloc[0]
|
| 433 |
|
| 434 |
+
col1, col2 = st.columns(2)
|
| 435 |
+
with col1:
|
| 436 |
+
st.metric("Cash 2024", f"{cash_2024:,.0f} NOK")
|
| 437 |
+
with col2:
|
| 438 |
+
cash_growth = ((cash_2024 - cash_2023) / cash_2023 * 100) if cash_2023 != 0 else 0
|
| 439 |
+
st.metric("Cash Growth", f"{cash_growth:+.1f}%")
|
| 440 |
+
|
| 441 |
+
# Cash Flow Page
|
| 442 |
+
elif current_page == "cashflow":
|
| 443 |
+
st.markdown("## 💸 Cash Flow Analysis")
|
| 444 |
+
|
| 445 |
+
cash_flow_data = df[df['Statement_Type'] == 'Cash Flow']
|
| 446 |
+
|
| 447 |
+
if cash_flow_data.empty:
|
| 448 |
+
st.warning("No cash flow statement data found.")
|
| 449 |
+
st.markdown("### Cash Flow Analysis from Available Data:")
|
| 450 |
+
|
| 451 |
+
# Analyze cash changes from balance sheet
|
| 452 |
+
cash_data = df[df['Account_Name_English'].str.contains('Cash', case=False, na=False)]
|
| 453 |
+
|
| 454 |
+
if not cash_data.empty:
|
| 455 |
+
cash_2024 = cash_data['2024_Amount_NOK'].iloc[0]
|
| 456 |
+
cash_2023 = cash_data['2023_Amount_NOK'].iloc[0]
|
| 457 |
+
cash_change = cash_2024 - cash_2023
|
| 458 |
|
| 459 |
+
fig = go.Figure(go.Waterfall(
|
| 460 |
+
name="Cash Flow",
|
| 461 |
+
orientation="v",
|
| 462 |
+
measure=["absolute", "relative", "absolute"],
|
| 463 |
+
x=["Starting Cash (2023)", "Net Change", "Ending Cash (2024)"],
|
| 464 |
+
textposition="outside",
|
| 465 |
+
text=[f"{cash_2023:,.0f}", f"{cash_change:+,.0f}", f"{cash_2024:,.0f}"],
|
| 466 |
+
y=[cash_2023, cash_change, cash_2024],
|
| 467 |
+
connector={"line":{"color":"rgb(63, 63, 63)"}},
|
| 468 |
+
))
|
| 469 |
|
| 470 |
+
fig.update_layout(
|
| 471 |
+
title="Cash Position Change 2023-2024",
|
| 472 |
+
showlegend=False,
|
| 473 |
+
yaxis_title="Amount (NOK)"
|
| 474 |
+
)
|
|
|
|
| 475 |
|
| 476 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
|
| 478 |
+
# Cash metrics
|
| 479 |
+
col1, col2, col3 = st.columns(3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
+
with col1:
|
| 482 |
+
st.metric("Starting Cash", f"{cash_2023:,.0f} NOK")
|
| 483 |
+
with col2:
|
| 484 |
+
st.metric("Ending Cash", f"{cash_2024:,.0f} NOK")
|
| 485 |
+
with col3:
|
| 486 |
+
growth = (cash_change / cash_2023 * 100) if cash_2023 != 0 else 0
|
| 487 |
+
st.metric("Cash Growth", f"{growth:+.1f}%")
|
| 488 |
+
|
| 489 |
+
return
|
| 490 |
+
|
| 491 |
+
# If we have cash flow data, display it
|
| 492 |
+
st.subheader("🌊 Cash Flow Structure")
|
| 493 |
+
|
| 494 |
+
operating_cf = cash_flow_data[cash_flow_data['Account_Name_English'].str.contains('Operating', case=False, na=False)]
|
| 495 |
+
investing_cf = cash_flow_data[cash_flow_data['Account_Name_English'].str.contains('Investing', case=False, na=False)]
|
| 496 |
+
financing_cf = cash_flow_data[cash_flow_data['Account_Name_English'].str.contains('Financing', case=False, na=False)]
|
| 497 |
+
|
| 498 |
+
if not operating_cf.empty or not investing_cf.empty or not financing_cf.empty:
|
| 499 |
+
fig = go.Figure()
|
| 500 |
+
|
| 501 |
+
categories = []
|
| 502 |
+
values_2024 = []
|
| 503 |
+
values_2023 = []
|
| 504 |
+
|
| 505 |
+
for cf_type, cf_data in [("Operating", operating_cf), ("Investing", investing_cf), ("Financing", financing_cf)]:
|
| 506 |
+
if not cf_data.empty:
|
| 507 |
+
categories.append(cf_type)
|
| 508 |
+
values_2024.append(cf_data['2024_Amount_NOK'].iloc[0])
|
| 509 |
+
values_2023.append(cf_data['2023_Amount_NOK'].iloc[0])
|
| 510 |
+
|
| 511 |
+
fig.add_trace(go.Bar(name='2023', x=categories, y=values_2023))
|
| 512 |
+
fig.add_trace(go.Bar(name='2024', x=categories, y=values_2024))
|
| 513 |
+
|
| 514 |
+
fig.update_layout(
|
| 515 |
+
title="Cash Flow by Category",
|
| 516 |
+
xaxis_title="Cash Flow Type",
|
| 517 |
+
yaxis_title="Amount (NOK)",
|
| 518 |
+
barmode='group'
|
| 519 |
+
)
|
| 520 |
|
| 521 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
| 522 |
|
| 523 |
+
# Financial Ratios Page
|
| 524 |
+
elif current_page == "ratios":
|
| 525 |
+
st.markdown("## 📊 Financial Ratios Center")
|
| 526 |
+
|
| 527 |
+
# Ratio categories
|
| 528 |
+
ratio_type = st.selectbox(
|
| 529 |
+
"Select Ratio Category",
|
| 530 |
+
["Profitability", "Liquidity", "Growth", "All Ratios"]
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
metrics = analyzer.get_key_metrics()
|
| 534 |
+
|
| 535 |
+
st.subheader(f"📈 {ratio_type} Ratios")
|
| 536 |
+
|
| 537 |
+
# Calculate ratios based on available data
|
| 538 |
+
ratios = {}
|
| 539 |
+
|
| 540 |
+
if metrics['revenue_2024'] > 0:
|
| 541 |
+
ratios['Net Profit Margin'] = (metrics['net_profit_2024'] / metrics['revenue_2024']) * 100
|
| 542 |
+
ratios['Revenue Growth Rate'] = metrics['revenue_growth']
|
| 543 |
+
|
| 544 |
+
if metrics['net_profit_2023'] != 0:
|
| 545 |
+
ratios['Profit Growth Rate'] = metrics['profit_growth']
|
| 546 |
+
|
| 547 |
+
# Display ratios
|
| 548 |
+
if ratios:
|
| 549 |
+
cols = st.columns(len(ratios))
|
| 550 |
+
|
| 551 |
+
for i, (ratio_name, ratio_value) in enumerate(ratios.items()):
|
| 552 |
+
with cols[i]:
|
| 553 |
+
# Determine rating
|
| 554 |
+
if 'Margin' in ratio_name:
|
| 555 |
+
rating = 'A' if ratio_value > 20 else 'B' if ratio_value > 10 else 'C'
|
| 556 |
+
elif 'Growth' in ratio_name:
|
| 557 |
+
rating = 'A+' if ratio_value > 50 else 'A' if ratio_value > 20 else 'B'
|
| 558 |
+
else:
|
| 559 |
+
rating = 'B'
|
| 560 |
+
|
| 561 |
+
st.metric(
|
| 562 |
+
ratio_name,
|
| 563 |
+
f"{ratio_value:.1f}%",
|
| 564 |
+
delta=f"Rating: {rating}"
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
# Ratio definitions
|
| 568 |
+
st.subheader("📖 Ratio Definitions")
|
| 569 |
+
|
| 570 |
+
with st.expander("Net Profit Margin"):
|
| 571 |
+
st.markdown("""
|
| 572 |
+
**Formula:** (Net Profit / Revenue) × 100
|
| 573 |
+
|
| 574 |
+
**Interpretation:** Measures how much profit a company makes for every NOK of revenue.
|
| 575 |
+
- **A (>20%):** Excellent profitability
|
| 576 |
+
- **B (10-20%):** Good profitability
|
| 577 |
+
- **C (<10%):** Needs improvement
|
| 578 |
+
""")
|
| 579 |
+
|
| 580 |
+
with st.expander("Revenue Growth Rate"):
|
| 581 |
+
st.markdown("""
|
| 582 |
+
**Formula:** ((Current Year Revenue - Previous Year Revenue) / Previous Year Revenue) × 100
|
| 583 |
+
|
| 584 |
+
**Interpretation:** Measures the rate of revenue increase year-over-year.
|
| 585 |
+
- **A+ (>50%):** Exceptional growth
|
| 586 |
+
- **A (20-50%):** Strong growth
|
| 587 |
+
- **B (0-20%):** Moderate growth
|
| 588 |
+
""")
|
| 589 |
+
|
| 590 |
+
# AI Assistant Page
|
| 591 |
+
elif current_page == "ai":
|
| 592 |
+
st.markdown("## 🤖 AI Financial Assistant")
|
| 593 |
+
|
| 594 |
+
st.markdown("### 💬 Ask me about your financial data")
|
| 595 |
+
|
| 596 |
+
# Quick action buttons
|
| 597 |
+
st.markdown("#### 🎯 Quick Analysis")
|
| 598 |
+
|
| 599 |
+
col1, col2, col3 = st.columns(3)
|
| 600 |
|
| 601 |
with col1:
|
| 602 |
+
if st.button("🏥 Health Check"):
|
| 603 |
+
st.markdown("### Financial Health Analysis")
|
| 604 |
+
insights = analyzer.generate_insights()
|
| 605 |
+
for insight in insights:
|
| 606 |
+
st.success(insight)
|
| 607 |
|
| 608 |
with col2:
|
| 609 |
+
if st.button("⚠️ Risk Assessment"):
|
| 610 |
+
st.markdown("### Risk Analysis")
|
| 611 |
+
metrics = analyzer.get_key_metrics()
|
| 612 |
+
|
| 613 |
+
risks = []
|
| 614 |
+
if metrics['revenue_growth'] < 0:
|
| 615 |
+
risks.append("🔴 Revenue Decline Risk - Immediate attention needed")
|
| 616 |
+
if metrics['net_profit_2024'] < 0:
|
| 617 |
+
risks.append("🔴 Profitability Risk - Company is operating at a loss")
|
| 618 |
+
|
| 619 |
+
if not risks:
|
| 620 |
+
risks.append("🟢 No major risks identified in current data")
|
| 621 |
+
|
| 622 |
+
for risk in risks:
|
| 623 |
+
if "🔴" in risk:
|
| 624 |
+
st.error(risk)
|
| 625 |
+
else:
|
| 626 |
+
st.success(risk)
|
| 627 |
+
|
| 628 |
+
with col3:
|
| 629 |
+
if st.button("💡 Recommendations"):
|
| 630 |
+
st.markdown("### Strategic Recommendations")
|
| 631 |
+
metrics = analyzer.get_key_metrics()
|
| 632 |
+
|
| 633 |
+
recommendations = []
|
| 634 |
+
|
| 635 |
+
if metrics['revenue_growth'] > 100:
|
| 636 |
+
recommendations.append("🚀 Scale operations to support rapid growth")
|
| 637 |
+
recommendations.append("💰 Consider investing in infrastructure")
|
| 638 |
+
|
| 639 |
+
if metrics['net_profit_2024'] > 0 and metrics['net_profit_2023'] <= 0:
|
| 640 |
+
recommendations.append("✅ Maintain current profitable strategies")
|
| 641 |
+
recommendations.append("📊 Focus on sustainable growth")
|
| 642 |
+
|
| 643 |
+
recommendations.append("📈 Continue monitoring key financial metrics")
|
| 644 |
+
recommendations.append("🔍 Consider more detailed financial analysis")
|
| 645 |
+
|
| 646 |
+
for rec in recommendations:
|
| 647 |
+
st.info(rec)
|
| 648 |
+
|
| 649 |
+
# Chat interface
|
| 650 |
+
st.markdown("---")
|
| 651 |
+
st.markdown("#### 💭 Custom Analysis")
|
| 652 |
+
|
| 653 |
+
user_question = st.text_area(
|
| 654 |
+
"Ask a specific question about your financial data:",
|
| 655 |
+
placeholder="e.g., What are the main drivers of our revenue growth?"
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
if st.button("🔍 Analyze") and user_question:
|
| 659 |
+
st.markdown("### Analysis Result")
|
| 660 |
+
|
| 661 |
+
# Simple rule-based responses
|
| 662 |
+
question_lower = user_question.lower()
|
| 663 |
+
|
| 664 |
+
if 'revenue' in question_lower and 'growth' in question_lower:
|
| 665 |
+
metrics = analyzer.get_key_metrics()
|
| 666 |
+
st.markdown(f"""
|
| 667 |
+
**Revenue Growth Analysis:**
|
| 668 |
+
|
| 669 |
+
Your revenue grew from {metrics['revenue_2023']:,.0f} NOK in 2023 to {metrics['revenue_2024']:,.0f} NOK in 2024,
|
| 670 |
+
representing a {metrics['revenue_growth']:.1f}% increase.
|
| 671 |
+
|
| 672 |
+
This indicates {"exceptional" if metrics['revenue_growth'] > 100 else "strong" if metrics['revenue_growth'] > 20 else "moderate"}
|
| 673 |
+
business growth.
|
| 674 |
+
""")
|
| 675 |
+
|
| 676 |
+
elif 'profit' in question_lower:
|
| 677 |
+
metrics = analyzer.get_key_metrics()
|
| 678 |
+
st.markdown(f"""
|
| 679 |
+
**Profitability Analysis:**
|
| 680 |
+
|
| 681 |
+
Your net profit changed from {metrics['net_profit_2023']:,.0f} NOK in 2023 to {metrics['net_profit_2024']:,.0f} NOK in 2024.
|
| 682 |
+
|
| 683 |
+
{"The company achieved profitability turnaround! 🎉" if metrics['net_profit_2024'] > 0 and metrics['net_profit_2023'] <= 0 else
|
| 684 |
+
"Profit increased significantly! 📈" if metrics['profit_growth'] > 50 else
|
| 685 |
+
"Company maintains profitability ✅" if metrics['net_profit_2024'] > 0 else
|
| 686 |
+
"Focus needed on achieving profitability ⚠️"}
|
| 687 |
+
""")
|
| 688 |
+
|
| 689 |
+
else:
|
| 690 |
+
st.markdown(f"""
|
| 691 |
+
**General Financial Overview:**
|
| 692 |
+
|
| 693 |
+
Based on your uploaded data, here's what I can tell you:
|
| 694 |
+
|
| 695 |
+
{analyzer.generate_insights()[0] if analyzer.generate_insights() else "Your financial data has been processed successfully."}
|
| 696 |
+
|
| 697 |
+
For more specific analysis, try asking about:
|
| 698 |
+
- Revenue growth trends
|
| 699 |
+
- Profitability analysis
|
| 700 |
+
- Cost structure
|
| 701 |
+
- Financial health assessment
|
| 702 |
+
""")
|
| 703 |
+
|
| 704 |
+
# Data preview in sidebar
|
| 705 |
+
st.sidebar.markdown("---")
|
| 706 |
+
st.sidebar.subheader("📋 Data Preview")
|
| 707 |
+
|
| 708 |
+
if st.sidebar.checkbox("Show uploaded data"):
|
| 709 |
+
st.sidebar.dataframe(df.head(), use_container_width=True)
|
| 710 |
+
|
| 711 |
+
# Export functionality
|
| 712 |
+
st.sidebar.markdown("---")
|
| 713 |
+
st.sidebar.subheader("📤 Export")
|
| 714 |
+
|
| 715 |
+
if st.sidebar.button("📊 Generate Report"):
|
| 716 |
+
st.sidebar.success("Report functionality will be implemented in future versions!")
|
| 717 |
|
| 718 |
+
if __name__ == "__main__":
|
| 719 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|