Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
import io
|
| 8 |
+
import base64
|
| 9 |
+
from reportlab.lib.pagesizes import letter
|
| 10 |
+
from reportlab.pdfgen import canvas
|
| 11 |
+
from reportlab.lib.utils import ImageReader
|
| 12 |
+
import random
|
| 13 |
+
|
| 14 |
+
# Global CSS for styling
|
| 15 |
+
css = """
|
| 16 |
+
.gradio-container {
|
| 17 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 18 |
+
font-family: 'Segoe UI', sans-serif;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
.gr-button {
|
| 22 |
+
background: linear-gradient(135deg, #667eea, #764ba2) !important;
|
| 23 |
+
border: none !important;
|
| 24 |
+
border-radius: 10px !important;
|
| 25 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
|
| 26 |
+
transition: all 0.3s ease !important;
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
.gr-button:hover {
|
| 30 |
+
transform: translateY(-2px) !important;
|
| 31 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
.gr-panel {
|
| 35 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
| 36 |
+
backdrop-filter: blur(10px) !important;
|
| 37 |
+
border-radius: 20px !important;
|
| 38 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
| 39 |
+
}
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
# Data generation functions
|
| 43 |
+
def generate_sensor_data():
|
| 44 |
+
"""Generate simulated sensor data for predictive maintenance"""
|
| 45 |
+
np.random.seed(42)
|
| 46 |
+
timestamps = pd.date_range(start=datetime.now() - timedelta(hours=200), periods=200, freq='H')
|
| 47 |
+
|
| 48 |
+
# Generate sensor data with anomalies
|
| 49 |
+
vibration = 2 + np.sin(np.arange(200) * 0.1) * 0.5 + np.random.normal(0, 0.2, 200)
|
| 50 |
+
temperature = 65 + np.sin(np.arange(200) * 0.05) * 10 + np.random.normal(0, 3, 200)
|
| 51 |
+
pressure = 85 + np.cos(np.arange(200) * 0.08) * 5 + np.random.normal(0, 2, 200)
|
| 52 |
+
|
| 53 |
+
# Add anomalies
|
| 54 |
+
vibration[150:160] += np.random.uniform(1, 3, 10)
|
| 55 |
+
temperature[150:160] += np.random.uniform(10, 20, 10)
|
| 56 |
+
pressure[180:] -= np.random.uniform(5, 15, 20)
|
| 57 |
+
|
| 58 |
+
df = pd.DataFrame({
|
| 59 |
+
'timestamp': timestamps,
|
| 60 |
+
'vibration': vibration,
|
| 61 |
+
'temperature': temperature,
|
| 62 |
+
'pressure': pressure
|
| 63 |
+
})
|
| 64 |
+
|
| 65 |
+
return df
|
| 66 |
+
|
| 67 |
+
def predictive_maintenance_analysis():
|
| 68 |
+
"""Run predictive maintenance analysis"""
|
| 69 |
+
df = generate_sensor_data()
|
| 70 |
+
|
| 71 |
+
# Calculate anomaly scores
|
| 72 |
+
anomaly_scores = []
|
| 73 |
+
for i, row in df.iterrows():
|
| 74 |
+
score = abs(row['vibration'] - 2) * 0.3 + abs(row['temperature'] - 65) * 0.02
|
| 75 |
+
if 150 <= i < 160:
|
| 76 |
+
score += 0.5
|
| 77 |
+
if i >= 180:
|
| 78 |
+
score += 0.3
|
| 79 |
+
anomaly_scores.append(min(score, 1))
|
| 80 |
+
|
| 81 |
+
df['anomaly_score'] = anomaly_scores
|
| 82 |
+
df['failure_probability'] = np.minimum(np.array(anomaly_scores) * 1.2 + np.random.uniform(0, 0.1, len(anomaly_scores)), 1)
|
| 83 |
+
|
| 84 |
+
# Create visualization
|
| 85 |
+
fig = go.Figure()
|
| 86 |
+
|
| 87 |
+
fig.add_trace(go.Scatter(
|
| 88 |
+
x=df['timestamp'], y=df['vibration'],
|
| 89 |
+
mode='lines', name='Vibration (mm/s)',
|
| 90 |
+
line=dict(color='#ff6b6b', width=2)
|
| 91 |
+
))
|
| 92 |
+
|
| 93 |
+
fig.add_trace(go.Scatter(
|
| 94 |
+
x=df['timestamp'], y=df['temperature'],
|
| 95 |
+
mode='lines', name='Temperature (Β°C)',
|
| 96 |
+
line=dict(color='#4ecdc4', width=2),
|
| 97 |
+
yaxis='y2'
|
| 98 |
+
))
|
| 99 |
+
|
| 100 |
+
fig.add_trace(go.Scatter(
|
| 101 |
+
x=df['timestamp'], y=df['failure_probability'],
|
| 102 |
+
mode='lines', name='Failure Probability',
|
| 103 |
+
line=dict(color='#feca57', width=3),
|
| 104 |
+
yaxis='y3'
|
| 105 |
+
))
|
| 106 |
+
|
| 107 |
+
fig.update_layout(
|
| 108 |
+
title='Equipment Health Monitoring & Failure Prediction',
|
| 109 |
+
xaxis_title='Time',
|
| 110 |
+
yaxis=dict(title='Vibration (mm/s)', side='left'),
|
| 111 |
+
yaxis2=dict(title='Temperature (Β°C)', overlaying='y', side='right', position=0.95),
|
| 112 |
+
yaxis3=dict(title='Failure Probability', overlaying='y', side='right'),
|
| 113 |
+
height=500,
|
| 114 |
+
showlegend=True,
|
| 115 |
+
template='plotly_white'
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Generate metrics
|
| 119 |
+
anomalies_detected = sum(1 for score in anomaly_scores if score > 0.5)
|
| 120 |
+
max_risk = max(df['failure_probability']) * 100
|
| 121 |
+
maintenance_days = 5
|
| 122 |
+
|
| 123 |
+
summary = f"""
|
| 124 |
+
π **Analysis Results:**
|
| 125 |
+
- **Anomalies Detected:** {anomalies_detected}
|
| 126 |
+
- **Maximum Risk:** {max_risk:.1f}%
|
| 127 |
+
- **Recommended Maintenance:** {maintenance_days} days
|
| 128 |
+
|
| 129 |
+
β οΈ **Alert:** Equipment vibration anomaly detected. Maintenance recommended within 5 days.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
return fig, summary
|
| 133 |
+
|
| 134 |
+
def route_optimization():
|
| 135 |
+
"""Simulate route optimization for work order dispatch"""
|
| 136 |
+
np.random.seed(42)
|
| 137 |
+
|
| 138 |
+
# Generate vehicles and tasks
|
| 139 |
+
vehicles = [
|
| 140 |
+
{'id': 'V001', 'lat': 22.3193, 'lng': 114.1694, 'capacity': 8},
|
| 141 |
+
{'id': 'V002', 'lat': 22.3093, 'lng': 114.1794, 'capacity': 6},
|
| 142 |
+
{'id': 'V003', 'lat': 22.3293, 'lng': 114.1594, 'capacity': 10}
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
tasks = []
|
| 146 |
+
priorities = ['High', 'Medium', 'Low']
|
| 147 |
+
for i in range(1, 9):
|
| 148 |
+
tasks.append({
|
| 149 |
+
'id': f'T{i:03d}',
|
| 150 |
+
'lat': 22.3193 + (np.random.random() - 0.5) * 0.1,
|
| 151 |
+
'lng': 114.1694 + (np.random.random() - 0.5) * 0.1,
|
| 152 |
+
'priority': np.random.choice(priorities),
|
| 153 |
+
'duration': np.random.randint(1, 5),
|
| 154 |
+
'description': f'Pipeline Cleaning Task {i}'
|
| 155 |
+
})
|
| 156 |
+
|
| 157 |
+
# Simulate optimization results
|
| 158 |
+
optimized_routes = [
|
| 159 |
+
{'vehicle': 'V001', 'tasks': ['T001', 'T003', 'T005'], 'distance': 24.5, 'time': '3.2h'},
|
| 160 |
+
{'vehicle': 'V002', 'tasks': ['T002', 'T004', 'T006'], 'distance': 18.7, 'time': '2.8h'},
|
| 161 |
+
{'vehicle': 'V003', 'tasks': ['T007', 'T008'], 'distance': 15.2, 'time': '2.1h'}
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
# Create map visualization
|
| 165 |
+
fig = go.Figure()
|
| 166 |
+
|
| 167 |
+
# Add vehicles
|
| 168 |
+
for i, vehicle in enumerate(vehicles):
|
| 169 |
+
fig.add_trace(go.Scattermapbox(
|
| 170 |
+
lat=[vehicle['lat']],
|
| 171 |
+
lon=[vehicle['lng']],
|
| 172 |
+
mode='markers',
|
| 173 |
+
marker=dict(size=15, color=['red', 'blue', 'green'][i]),
|
| 174 |
+
text=f"Vehicle {vehicle['id']}",
|
| 175 |
+
name=vehicle['id']
|
| 176 |
+
))
|
| 177 |
+
|
| 178 |
+
# Add tasks
|
| 179 |
+
task_lats = [task['lat'] for task in tasks]
|
| 180 |
+
task_lngs = [task['lng'] for task in tasks]
|
| 181 |
+
task_texts = [f"{task['id']}: {task['description']}" for task in tasks]
|
| 182 |
+
|
| 183 |
+
fig.add_trace(go.Scattermapbox(
|
| 184 |
+
lat=task_lats,
|
| 185 |
+
lon=task_lngs,
|
| 186 |
+
mode='markers',
|
| 187 |
+
marker=dict(size=10, color='orange'),
|
| 188 |
+
text=task_texts,
|
| 189 |
+
name='Tasks'
|
| 190 |
+
))
|
| 191 |
+
|
| 192 |
+
fig.update_layout(
|
| 193 |
+
mapbox=dict(
|
| 194 |
+
style="open-street-map",
|
| 195 |
+
center=dict(lat=22.3193, lon=114.1694),
|
| 196 |
+
zoom=12
|
| 197 |
+
),
|
| 198 |
+
height=500,
|
| 199 |
+
title="Optimized Route Dispatch Map"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Generate summary
|
| 203 |
+
total_distance = sum(route['distance'] for route in optimized_routes)
|
| 204 |
+
total_time = sum(float(route['time'][:-1]) for route in optimized_routes)
|
| 205 |
+
efficiency_improvement = 35
|
| 206 |
+
|
| 207 |
+
summary = f"""
|
| 208 |
+
π― **Optimization Results:**
|
| 209 |
+
- **Total Distance:** {total_distance} km
|
| 210 |
+
- **Total Time:** {total_time:.1f} hours
|
| 211 |
+
- **Efficiency Improvement:** {efficiency_improvement}%
|
| 212 |
+
|
| 213 |
+
π **Route Assignments:**
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
for route in optimized_routes:
|
| 217 |
+
summary += f"\n- **{route['vehicle']}**: {' β '.join(route['tasks'])} ({route['distance']}km, {route['time']})"
|
| 218 |
+
|
| 219 |
+
return fig, summary
|
| 220 |
+
|
| 221 |
+
def quality_analysis():
|
| 222 |
+
"""Run quality assurance monitoring and analysis"""
|
| 223 |
+
np.random.seed(42)
|
| 224 |
+
|
| 225 |
+
# Generate quality data
|
| 226 |
+
pipelines = []
|
| 227 |
+
for i in range(1, 7):
|
| 228 |
+
before_cleaning = np.random.uniform(10, 25) # 10-25% residual
|
| 229 |
+
after_cleaning = np.random.uniform(0.5, 3.5) # 0.5-3.5% residual
|
| 230 |
+
flow_recovery = np.random.uniform(85, 97) # 85-97% flow recovery
|
| 231 |
+
|
| 232 |
+
status = 'Pass' if after_cleaning < 2 and flow_recovery > 90 else 'Fail'
|
| 233 |
+
|
| 234 |
+
pipelines.append({
|
| 235 |
+
'id': f'P{i:03d}',
|
| 236 |
+
'before_cleaning': before_cleaning,
|
| 237 |
+
'after_cleaning': after_cleaning,
|
| 238 |
+
'flow_recovery': flow_recovery,
|
| 239 |
+
'status': status
|
| 240 |
+
})
|
| 241 |
+
|
| 242 |
+
df = pd.DataFrame(pipelines)
|
| 243 |
+
|
| 244 |
+
# Create comparison chart
|
| 245 |
+
fig = go.Figure()
|
| 246 |
+
|
| 247 |
+
fig.add_trace(go.Bar(
|
| 248 |
+
x=df['id'],
|
| 249 |
+
y=df['before_cleaning'],
|
| 250 |
+
name='Before Cleaning (%)',
|
| 251 |
+
marker_color='#e17055'
|
| 252 |
+
))
|
| 253 |
+
|
| 254 |
+
fig.add_trace(go.Bar(
|
| 255 |
+
x=df['id'],
|
| 256 |
+
y=df['after_cleaning'],
|
| 257 |
+
name='After Cleaning (%)',
|
| 258 |
+
marker_color='#00b894'
|
| 259 |
+
))
|
| 260 |
+
|
| 261 |
+
fig.update_layout(
|
| 262 |
+
title='Pipeline Cleaning Effectiveness Comparison',
|
| 263 |
+
xaxis_title='Pipeline ID',
|
| 264 |
+
yaxis_title='Residual Rate (%)',
|
| 265 |
+
barmode='group',
|
| 266 |
+
height=400,
|
| 267 |
+
template='plotly_white'
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# Calculate metrics
|
| 271 |
+
passed = len(df[df['status'] == 'Pass'])
|
| 272 |
+
failed = len(df) - passed
|
| 273 |
+
pass_rate = (passed / len(df)) * 100
|
| 274 |
+
|
| 275 |
+
summary = f"""
|
| 276 |
+
β
**Quality Analysis Results:**
|
| 277 |
+
- **Passed:** {passed} pipelines
|
| 278 |
+
- **Failed:** {failed} pipelines
|
| 279 |
+
- **Pass Rate:** {pass_rate:.1f}%
|
| 280 |
+
|
| 281 |
+
π **Detailed Results:**
|
| 282 |
+
"""
|
| 283 |
+
|
| 284 |
+
for _, pipeline in df.iterrows():
|
| 285 |
+
status_emoji = "β
" if pipeline['status'] == 'Pass' else "β"
|
| 286 |
+
summary += f"\n{status_emoji} **{pipeline['id']}**: {pipeline['status']} (Residual: {pipeline['after_cleaning']:.1f}%, Flow: {pipeline['flow_recovery']:.1f}%)"
|
| 287 |
+
|
| 288 |
+
return fig, summary, df
|
| 289 |
+
|
| 290 |
+
def generate_pdf_report():
|
| 291 |
+
"""Generate PDF quality report"""
|
| 292 |
+
_, _, df = quality_analysis()
|
| 293 |
+
|
| 294 |
+
# Create PDF in memory
|
| 295 |
+
buffer = io.BytesIO()
|
| 296 |
+
p = canvas.Canvas(buffer, pagesize=letter)
|
| 297 |
+
|
| 298 |
+
# Title
|
| 299 |
+
p.setFont("Helvetica-Bold", 20)
|
| 300 |
+
p.drawString(50, 750, "Pipeline Cleaning Quality Report")
|
| 301 |
+
|
| 302 |
+
# Basic info
|
| 303 |
+
p.setFont("Helvetica", 12)
|
| 304 |
+
p.drawString(50, 720, f"Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 305 |
+
p.drawString(50, 700, f"Total Pipelines Tested: {len(df)}")
|
| 306 |
+
|
| 307 |
+
# Statistics
|
| 308 |
+
passed = len(df[df['status'] == 'Pass'])
|
| 309 |
+
pass_rate = (passed / len(df)) * 100
|
| 310 |
+
p.drawString(50, 680, f"Pass Rate: {pass_rate:.1f}%")
|
| 311 |
+
|
| 312 |
+
# Detailed results
|
| 313 |
+
p.setFont("Helvetica-Bold", 14)
|
| 314 |
+
p.drawString(50, 650, "Detailed Test Results:")
|
| 315 |
+
|
| 316 |
+
p.setFont("Helvetica", 10)
|
| 317 |
+
y_pos = 630
|
| 318 |
+
for _, pipeline in df.iterrows():
|
| 319 |
+
result_text = f"{pipeline['id']}: {pipeline['status']} - Residual: {pipeline['after_cleaning']:.1f}%, Flow Recovery: {pipeline['flow_recovery']:.1f}%"
|
| 320 |
+
p.drawString(60, y_pos, result_text)
|
| 321 |
+
y_pos -= 20
|
| 322 |
+
|
| 323 |
+
p.save()
|
| 324 |
+
buffer.seek(0)
|
| 325 |
+
|
| 326 |
+
return buffer.getvalue()
|
| 327 |
+
|
| 328 |
+
# Create Gradio interface
|
| 329 |
+
def create_interface():
|
| 330 |
+
with gr.Blocks(css=css, title="AI Engine - Smart Maintenance System") as demo:
|
| 331 |
+
gr.HTML("""
|
| 332 |
+
<div style="text-align: center; padding: 30px; background: rgba(255,255,255,0.1); border-radius: 20px; margin-bottom: 30px;">
|
| 333 |
+
<h1 style="color: white; font-size: 2.5em; margin-bottom: 10px; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
|
| 334 |
+
π€ AI Engine - Smart Maintenance System
|
| 335 |
+
</h1>
|
| 336 |
+
<p style="color: rgba(255,255,255,0.9); font-size: 1.2em;">
|
| 337 |
+
AI-Powered Pipeline Cleaning & Maintenance Solution
|
| 338 |
+
</p>
|
| 339 |
+
</div>
|
| 340 |
+
""")
|
| 341 |
+
|
| 342 |
+
with gr.Tabs():
|
| 343 |
+
# Predictive Maintenance Tab
|
| 344 |
+
with gr.TabItem("π§ Predictive Maintenance"):
|
| 345 |
+
gr.HTML("<h3>π LSTM-based Anomaly Detection & Failure Prediction</h3>")
|
| 346 |
+
|
| 347 |
+
with gr.Row():
|
| 348 |
+
with gr.Column():
|
| 349 |
+
predict_btn = gr.Button("π Run Predictive Analysis", variant="primary")
|
| 350 |
+
predict_summary = gr.Markdown()
|
| 351 |
+
|
| 352 |
+
with gr.Column():
|
| 353 |
+
predict_plot = gr.Plot()
|
| 354 |
+
|
| 355 |
+
predict_btn.click(
|
| 356 |
+
predictive_maintenance_analysis,
|
| 357 |
+
outputs=[predict_plot, predict_summary]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# Route Optimization Tab
|
| 361 |
+
with gr.TabItem("π Route Optimization"):
|
| 362 |
+
gr.HTML("<h3>π― OR-Tools Vehicle Routing Problem (VRP) Solver</h3>")
|
| 363 |
+
|
| 364 |
+
with gr.Row():
|
| 365 |
+
with gr.Column():
|
| 366 |
+
route_btn = gr.Button("πΊοΈ Optimize Routes", variant="primary")
|
| 367 |
+
route_summary = gr.Markdown()
|
| 368 |
+
|
| 369 |
+
with gr.Column():
|
| 370 |
+
route_plot = gr.Plot()
|
| 371 |
+
|
| 372 |
+
route_btn.click(
|
| 373 |
+
route_optimization,
|
| 374 |
+
outputs=[route_plot, route_summary]
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
# Quality Assurance Tab
|
| 378 |
+
with gr.TabItem("π Quality Assurance"):
|
| 379 |
+
gr.HTML("<h3>β
Automated Quality Monitoring & Reporting</h3>")
|
| 380 |
+
|
| 381 |
+
with gr.Row():
|
| 382 |
+
with gr.Column():
|
| 383 |
+
quality_btn = gr.Button("π Run Quality Analysis", variant="primary")
|
| 384 |
+
pdf_btn = gr.Button("π Generate PDF Report", variant="secondary")
|
| 385 |
+
quality_summary = gr.Markdown()
|
| 386 |
+
pdf_output = gr.File(label="Download Report")
|
| 387 |
+
|
| 388 |
+
with gr.Column():
|
| 389 |
+
quality_plot = gr.Plot()
|
| 390 |
+
|
| 391 |
+
quality_btn.click(
|
| 392 |
+
lambda: quality_analysis()[:2],
|
| 393 |
+
outputs=[quality_plot, quality_summary]
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
pdf_btn.click(
|
| 397 |
+
generate_pdf_report,
|
| 398 |
+
outputs=[pdf_output]
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
gr.HTML("""
|
| 402 |
+
<div style="text-align: center; margin-top: 30px; padding: 20px; background: rgba(255,255,255,0.1); border-radius: 15px;">
|
| 403 |
+
<p style="color: white;">
|
| 404 |
+
π <strong>AI Engine Demo</strong> | Powered by Machine Learning & Optimization Algorithms
|
| 405 |
+
</p>
|
| 406 |
+
</div>
|
| 407 |
+
""")
|
| 408 |
+
|
| 409 |
+
return demo
|
| 410 |
+
|
| 411 |
+
# Launch the application
|
| 412 |
+
if __name__ == "__main__":
|
| 413 |
+
demo = create_interface()
|
| 414 |
+
demo.launch(share=True)
|